conv_op.cc 33.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
L
liym27 已提交
34 35 36 37 38 39
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
46 47
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
48
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
49
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
50 51
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
52

L
liym27 已提交
53
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
54 55 56 57
                    "ShapeError: Conv input should be 4-D or 5-D tensor. But "
                    "received: %u-D Tensor,"
                    "the shape of Conv input is [%s]",
                    in_dims.size(), in_dims);
58

C
chengduoZH 已提交
59 60
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
      "ShapeError: Conv input dimension and filter dimension should be the "
      "equal."
      "But received: the shape of Conv input is [%s], input dimension of Conv "
      "input is [%d],"
      "the shape of filter is [%s],  the filter dimension of Conv is [%d]",
      in_dims, in_dims.size(), filter_dims, filter_dims.size());

  int in_sub_stride_size = in_dims.size() - strides.size();
  PADDLE_ENFORCE_EQ(in_dims.size() - strides.size() == 2U, true,
                    "ShapeError: the dimension of input minus the dimension of "
                    "stride must be euqal to 2."
                    "But received: the dimension of input minus the dimension "
                    "of stride is [%d], the"
                    "input dimension of Conv is [%d], the shape of Conv input "
                    "is [%s], the stride"
                    "dimension of Conv is [%d]",
                    in_sub_stride_size, in_dims.size(), in_dims,
                    strides.size());
L
liym27 已提交
79 80 81

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
82

83 84 85 86 87 88 89 90
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
      "ShapeError: The number of input channels should be equal to filter "
      "channels * groups. But received: the input channels is [%d], the shape"
      "of input is [%s], the filter channel is [%d], the shape of filter is "
      "[%s],"
      "the groups is [%d]",
      in_dims[1], in_dims, filter_dims[1], filter_dims, groups);
C
chengduoZH 已提交
91
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
92
      filter_dims[0] % groups, 0,
93 94 95 96
      "ShapeError: The number of output channels should be divided by groups."
      "But received: the output channels is [%d], the shape of filter is [%s]"
      "(the first dimension of filter is output channel), the groups is [%d]",
      filter_dims[0], filter_dims, groups);
C
chengduoZH 已提交
97

L
liym27 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
  for (size_t i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
115
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
116
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
117 118
      output_shape.push_back(-1);
    } else {
L
liym27 已提交
119 120 121
      output_shape.push_back(ConvOutputSize(in_data_dims[i], filter_dims[i + 2],
                                            dilations[i], paddings[2 * i],
                                            paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
122
    }
C
chengduoZH 已提交
123
  }
L
liym27 已提交
124 125 126 127
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

128
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
129
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
130 131
}

132 133
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
134 135
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
136
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
137
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
138
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
L
liym27 已提交
139 140
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
141 142
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
143
#ifdef PADDLE_WITH_CUDA
144
  if (platform::CanCUDNNBeUsed(ctx)) {
145
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
146 147
  }
#endif
148
#ifdef PADDLE_WITH_MKLDNN
149
  if (library == framework::LibraryType::kPlain &&
150
      platform::CanMKLDNNBeUsed(ctx)) {
151
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
152
    layout = framework::DataLayout::kMKLDNN;
153
    customized_type_value =
154 155
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
156 157
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
158
  }
159
#endif
160

161 162 163 164 165 166
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
167
  if (input_data_type == framework::proto::VarType::FP16) {
168
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
169 170 171
                      "float16 can only be used when CUDNN is used");
  }

172 173 174 175 176 177 178 179 180 181 182 183 184 185
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
186 187
}

Y
Yu Yang 已提交
188
void Conv2DOpMaker::Make() {
189 190 191 192
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
193 194 195 196 197 198
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
199
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
200
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
201 202
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
203 204
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
205
           "input image channels divided by the groups.");
206 207 208 209 210
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
211 212 213
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
214
           "Used with fuse_residual_connection fusion.")
215
      .AsDispensable();
Y
Yihua Xu 已提交
216 217
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
218
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
219 220 221 222
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
223
      .SetDefault({1, 1});
C
chengduoZH 已提交
224 225
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
226 227
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
228
                            "convolution operator.")
C
chengduoZH 已提交
229
      .SetDefault({0, 0});
L
liym27 已提交
230 231 232 233 234 235
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
236 237
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
238
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
239 240 241 242
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
243
      .SetDefault(1);
C
chengduoZH 已提交
244
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
245 246
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
247
                            "convolution operator.")
C
chengduoZH 已提交
248
      .SetDefault({1, 1});
249 250 251 252
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
253 254 255
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
256 257 258
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
259 260 261 262 263 264
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
265 266
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
267 268 269 270 271 272
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
273 274 275 276 277 278 279 280
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
281
  AddAttr<bool>("fuse_residual_connection",
282
                "(bool, default false) Only used in mkldnn kernel. Used "
283 284
                "whenever convolution output is as an input to residual "
                "connection.")
285
      .SetDefault(false);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
306 307 308 309 310 311
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
312
      .SetDefault("NCHW");
313 314 315 316 317 318 319 320
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
321
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
322 323
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
324
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
325
                "for cuDNN convolution or not, default is False.")
326
      .SetDefault(false);
L
liym27 已提交
327

C
chengduoZH 已提交
328
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
329 330
Convolution Operator.

C
chengduoZH 已提交
331
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
332
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
333
parameters is checked in the infer-shape.
L
liym27 已提交
334
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
335
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
336 337 338 339 340 341
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
342 343 344 345
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
346 347
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
348
  Output:
C
chengduoZH 已提交
349 350 351
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
352 353
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
354
$$
C
chengduoZH 已提交
355
)DOC");
Q
qingqing01 已提交
356
  Apply();
C
chengduoZH 已提交
357 358
}

Y
Yu Yang 已提交
359
void Conv3DOpMaker::Make() {
360 361 362 363
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
364 365
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
366
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
367 368
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
369 370 371
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
372
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
373
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
374 375
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
376 377 378
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
379
           "input image channels divided by the groups.");
380 381 382 383 384
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
385 386
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
387
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
388 389 390 391
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
392
      .SetDefault({1, 1, 1});
L
liym27 已提交
393 394 395 396 397 398
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
399
      .SetDefault({0, 0, 0});
L
liym27 已提交
400 401 402 403 404 405
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
406 407
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
408
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
409 410 411 412
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
413
      .SetDefault(1);
C
chengduoZH 已提交
414
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
415 416
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
417
                            "convolution operator.")
C
chengduoZH 已提交
418
      .SetDefault({1, 1, 1});
419 420 421 422
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
423 424 425
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
426 427
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
428 429 430 431 432 433 434 435
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
436 437 438 439 440
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
441 442
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
443 444 445
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
446
      "the input will be transformed automatically. ")
L
liym27 已提交
447
      .SetDefault("NCDHW");
448 449 450
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
451 452 453 454 455 456 457
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
458
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
459 460
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
461
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
462
                "for cuDNN convolution or not, default is False.")
463
      .SetDefault(false);
C
chengduoZH 已提交
464
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
465 466
Convolution3D Operator.

C
chengduoZH 已提交
467
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
468
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
469
parameters is checked in the infer-shape.
L
liym27 已提交
470
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
471
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
472 473 474 475 476 477
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
478 479 480 481
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
482 483
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
484
  Output:
C
chengduoZH 已提交
485 486 487
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
488 489 490
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
491
  $$
C
chengduoZH 已提交
492
)DOC");
Q
qingqing01 已提交
493
  Apply();
C
chengduoZH 已提交
494 495
}

C
chengduoZH 已提交
496 497 498 499 500 501 502 503 504 505 506
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

507 508
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
509 510
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
511
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
512
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
513
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
514 515
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
516
#ifdef PADDLE_WITH_CUDA
517 518
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
519 520
  }
#endif
521 522 523 524
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
525
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
526
    customized_type_value = kConvMKLDNNFP32;
527
  }
528
#endif
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
549 550
}

S
sneaxiy 已提交
551
class Conv2DGradMaker : public framework::SingleGradOpDescMaker {
552 553 554 555 556
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
S
sneaxiy 已提交
557
    op->SetType(this->ForwardOpType() + "_grad");
558 559 560 561 562 563 564 565 566 567 568 569
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
S
sneaxiy 已提交
570 571 572 573 574
};

class Conv3DGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
575

S
sneaxiy 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));

    if (ForwardOp().Inputs().count("ResidualData") != 0) {
      op->SetInput("ResidualData", Input("ResidualData"));
    }

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
593 594 595
  }
};

Q
qingqing01 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv2DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
617 618 619 620
    auto ddx = OutputGrad(framework::GradVarName("Input"));
    auto ddw = OutputGrad(framework::GradVarName("Filter"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
621 622 623 624
    op->SetOutput("DDOutput",
                  (ddx.empty() && ddw.empty())
                      ? empty_str
                      : InputGrad(framework::GradVarName("Output")));
625 626 627
    op->SetOutput("DFilter", ddx.empty() ? empty_str : InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? empty_str : InputGrad("Input"));

Q
qingqing01 已提交
628 629 630 631 632 633
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

L
lvmengsi 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv3DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    auto ddx = OutputGrad(framework::GradVarName("Input"));
    auto ddw = OutputGrad(framework::GradVarName("Filter"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
656 657 658 659
    op->SetOutput("DDOutput",
                  (ddx.empty() && ddw.empty())
                      ? empty_str
                      : InputGrad(framework::GradVarName("Output")));
L
lvmengsi 已提交
660 661 662 663 664 665 666 667 668
    op->SetOutput("DFilter", ddx.empty() ? empty_str : InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? empty_str : InputGrad("Input"));

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Q
qingqing01 已提交
669 670 671 672 673
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
674 675
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
676 677
    ctx->SetOutputDim("DDOutput", do_dims);
  }
678
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
679 680
    ctx->SetOutputDim("DFilter", w_dims);
  }
681
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
682 683 684 685 686 687 688 689 690
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
691
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
692 693 694 695 696
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
697 698 699 700 701 702 703 704
  }
#endif
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
    customized_type_value = kConvMKLDNNFP32;
Q
qingqing01 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  }
#endif
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p0(
          new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
      configs.push_back(p0);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p1(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p1);

      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
}

C
chengduoZH 已提交
732 733 734 735
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
736
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
737
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
Q
qingqing01 已提交
738 739
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad, ops::Conv2DDoubleGradMaker);
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
740 741

// depthwise convolution op
Y
Yang Yang 已提交
742
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
743
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
744
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
745

Y
Yang Yang 已提交
746
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
S
sneaxiy 已提交
747
                  ops::ConvOpInferVarType, ops::Conv3DGradMaker);
L
lvmengsi 已提交
748 749
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad, ops::Conv3DDoubleGradMaker);
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
750

751 752
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
753
REGISTER_OP_CPU_KERNEL(
754
    depthwise_conv2d,
X
xzl 已提交
755 756 757 758
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
759
    depthwise_conv2d_grad,
X
xzl 已提交
760 761
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
762

C
chengduoZH 已提交
763
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
764 765 766 767 768 769
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
770 771 772 773
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
774 775

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
776 777 778 779 780 781
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
782 783 784 785
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);