parallel.py 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22 23 24 25 26

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
27
import paddle.fluid.framework as framework
28 29
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
X
xiongkun 已提交
30
from paddle.distributed.fleet.launch_utils import check_backend
31
from paddle.fluid.dygraph.parallel import ParallelEnv
32
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready  # noqa: F401
33 34 35 36 37 38 39 40 41
import paddle.distributed.collective as collective
from paddle.distributed.collective import _group_map_by_name
from paddle.distributed.collective import _group_map
from paddle.distributed.collective import _default_group_name
from paddle.distributed.collective import _valid_backend_list
from paddle.distributed.collective import _default_backend
from paddle.distributed.collective import _default_store
from paddle.distributed.collective import _new_process_group_impl
from paddle.distributed.collective import Group
42

43
__all__ = []
44 45 46

ParallelStrategy = core.ParallelStrategy

47 48 49 50 51 52 53 54 55 56 57
# NOTE(chenweihang): Maintain a global parallel env to avoid 
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

58

59
def _start_kv_server(port, http_server_d, size):
60
    from paddle.distributed.fleet.utils.http_server import KVServer
61
    http_server = KVServer(int(port), size=size)
62
    http_server.start()
63
    wait_seconds = 3
L
lilong12 已提交
64
    while http_server_d.get("running", False) or not http_server.should_stop():
65 66 67 68
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
69 70
def _is_cpuonly(backend):
    check_backend(backend)
71
    if backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl'] and (
72
            core.is_compiled_with_cuda() or core.is_compiled_with_xpu() or
73
            core.is_compiled_with_npu() or core.is_compiled_with_mlu()):
74

75 76 77 78 79 80
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
81 82 83 84 85 86 87 88
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
        raise ValueError("paddle.distributed initialize error, "
                         "environment variable %s is needed, but not set." %
                         var_name)


X
xiongkun 已提交
89
def init_parallel_env():
90
    """
91
    Initialize parallel training environment in dynamic graph mode.
92

93
    .. note::
94
        Now initialize both `NCCL` and `GLOO` contexts for communication.
95

96 97 98 99 100
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

101 102 103 104 105
    Returns:
        None
        
    Examples:
        .. code-block:: python
106
            # required: gpu
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
122
                # 1. initialize parallel environment
123 124
                dist.init_parallel_env()

125
                # 2. create data parallel layer & optimizer
126 127 128 129 130 131 132
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

133
                # 3. run layer
134 135 136 137 138 139 140 141 142 143 144 145 146 147
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

148 149 150 151 152 153 154 155 156 157 158
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
159 160
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to 
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
161 162
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
163 164
    # 1. gpu xpu check, must be gpu or xpu, 
    if not (is_cpu_only or core.is_compiled_with_cuda() or
165 166
            core.is_compiled_with_xpu() or core.is_compiled_with_npu() or
            core.is_compiled_with_mlu()):
167
        raise NotImplementedError(
168
            "If you want to use CPU-only version, please use 'gloo' as backend")
169

170
    if not is_cpu_only and core.is_compiled_with_cuda():
171
        _check_var_exists("FLAGS_selected_gpus")
172
        backend = "nccl" if backend == "auto" else backend
173
    elif not is_cpu_only and core.is_compiled_with_xpu():
174
        _check_var_exists('FLAGS_selected_xpus')
175
        backend = "bkcl" if backend == "auto" else backend
K
kuizhiqing 已提交
176 177
    elif not is_cpu_only and core.is_compiled_with_npu():
        _check_var_exists('FLAGS_selected_npus')
178
        backend = "hccl" if backend == "auto" else backend
179 180
    elif not is_cpu_only and core.is_compiled_with_mlu():
        _check_var_exists('FLAGS_selected_mlus')
181
        backend = "cncl" if backend == "auto" else backend
182

183 184 185 186 187
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
    if is_cpu_only:
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
    if backend in _valid_backend_list and framework._in_eager_mode_:
        if _default_group_name in collective._group_map_by_name:
            return collective._group_map_by_name[_default_group_name]
        _default_backend = backend
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
            "required to create a process group.")
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
        if not master_addr or not master_port:
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
            "with paddle.distributed.run module.")
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
        _default_store = core.TCPStore(master_addr, master_port, is_master,
                                       world_size)
        pg = _new_process_group_impl(
            backend,
            _default_store,
            rank,
            world_size,
            _default_group_name,
            pg_options=None)
        ranks = list(range(world_size))
        group = Group(
            rank,
            world_size,
            id=0,
            ranks=ranks,
            pg=pg,
            name=_default_group_name)
        collective._group_map_by_name[_default_group_name] = group
        _group_map[0] = group
        parallel_helper._set_parallel_ctx(True)
        return group

K
kuizhiqing 已提交
254
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
255
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
256
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
257
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
258 259 260 261 262 263 264 265
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
266 267
            if backend == "heter":
                size = {'_worker': len(node_num)}
L
lilong12 已提交
268 269 270 271 272 273
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size))
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
274 275

    # 4. init NCCL ParallelStrategy
276
    strategy = ParallelStrategy()
277 278
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
279 280 281 282
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
283
    strategy.nrings = parallel_env.nrings
284

K
kuizhiqing 已提交
285
    # init nccl or hccl or bkcl or heter context
286 287 288
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
            core.GLOOParallelContext(strategy, place))
K
kuizhiqing 已提交
289 290 291
    elif (backend == "heter"):
        parallel_helper._set_parallel_ctx(
            core.HeterParallelContext(strategy, parallel_env.device_id))
292
    elif core.is_compiled_with_cuda():
293 294 295 296 297
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
            core.BKCLParallelContext(strategy, place))
298 299 300
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
            core.HCCLParallelContext(strategy, place))
301 302 303
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
            core.CNCLParallelContext(strategy, place))
304

K
kuizhiqing 已提交
305 306 307 308 309
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
310

311
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
312

313 314 315 316
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
317
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
318 319 320 321
        # compare to init_gloo, we don't need to 
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
322

323 324
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
339
    return group
340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
362
    return _get_global_parallel_env().rank
363 364 365 366


def get_world_size():
    """
367
    Returns the number of trainers (number of processes participating in current job).
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
385
    return _get_global_parallel_env().world_size