test_learning_rate_scheduler.py 7.6 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import copy
18 19
import math
import unittest
20

21
import paddle.fluid as fluid
22
import paddle.fluid.layers as layers
23
import paddle.fluid.framework as framework
Q
QI JUN 已提交
24
import paddle.fluid.core as core
Q
Qiao Longfei 已提交
25 26 27 28 29 30 31


def exponential_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
Y
Yu Yang 已提交
32
    exponent = global_step / decay_steps
Q
Qiao Longfei 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * decay_rate**exponent


def natural_exp_decay(learning_rate,
                      global_step,
                      decay_steps,
                      decay_rate,
                      staircase=False):
    exponent = float(global_step) / float(decay_steps)
    if staircase:
        exponent = math.floor(exponent)
    return learning_rate * math.exp(-1 * decay_rate * exponent)


def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False):
    temp = float(global_step) / float(decay_steps)
    if staircase:
        temp = math.floor(temp)
    return learning_rate / (1 + decay_rate * temp)


60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
def polynomial_decay(learning_rate,
                     global_step,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
    if cycle:
        div = math.ceil(global_step / float(decay_steps))
        if div == 0:
            div = 1
        decay_steps = decay_steps * div
    else:
        global_step = min(global_step, decay_steps)
    return (learning_rate - end_learning_rate) * \
           ((1 - float(global_step) / float(decay_steps)) ** power) + end_learning_rate


def piecewise_decay(global_step, boundaries, values):
    assert len(boundaries) + 1 == len(values)
    for i in range(len(boundaries)):
        if global_step < boundaries[i]:
            return values[i]
    return values[len(values) - 1]
Q
Qiao Longfei 已提交
83

84

S
shippingwang 已提交
85 86 87 88 89 90 91
def cosine_decay(global_step, learning_rate, step_each_epoch, epochs):
    cur_epoch = math.floor(global_step / step_each_epoch)
    decayed_lr = learning_rate * 0.5 * (
        math.cos(cur_epoch * math.pi / epochs) + 1)
    return decayed_lr


92 93
class TestLearningRateDecay(unittest.TestCase):
    def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs):
Q
QI JUN 已提交
94 95 96 97 98 99 100 101 102
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.check_decay_with_place(place, python_decay_fn, fluid_decay_fn,
                                        kwargs)

    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
103 104
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
Q
QI JUN 已提交
105

106
        with fluid.program_guard(main_prog, startup_prog):
107
            decayed_lr = fluid_decay_fn(**kwargs)
Q
Qiao Longfei 已提交
108 109 110 111

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

112
        exe.run(startup_prog)
113

114
        fluid.memory_optimize(main_prog)
115

Q
Qiao Longfei 已提交
116
        for step in range(10):
117
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
Y
Yu Yang 已提交
118 119 120 121 122
            python_decayed_lr = python_decay_fn(
                global_step=float(step), **kwargs)
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
123
                msg='Failed lr scheduler is {0}, step {1}, Python result is {2}, Fluid result is {3}'.
Y
Yu Yang 已提交
124
                format(python_decay_fn.__name__,
125
                       str(step), str(python_decayed_lr), str(lr_val[0])))
Q
Qiao Longfei 已提交
126 127

    def test_decay(self):
128 129 130 131 132 133 134 135 136
        common_kwargs_true = {
            "learning_rate": 1.0,
            "decay_steps": 5,
            "decay_rate": 0.5,
            "staircase": True
        }
        common_kwargs_false = copy.deepcopy(common_kwargs_true)
        common_kwargs_false["staircase"] = False

Q
Qiao Longfei 已提交
137
        decay_fns = [
138 139 140 141 142 143
            (exponential_decay, layers.exponential_decay, common_kwargs_true),
            (exponential_decay, layers.exponential_decay, common_kwargs_false),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_true),
            (natural_exp_decay, layers.natural_exp_decay, common_kwargs_false),
            (inverse_time_decay, layers.inverse_time_decay, common_kwargs_true),
            (inverse_time_decay, layers.inverse_time_decay,
144
             common_kwargs_false),
145
            (polynomial_decay, layers.polynomial_decay, {
146 147 148 149
                "learning_rate": 1.0,
                "decay_steps": 5,
                "cycle": True
            }),
150
            (polynomial_decay, layers.polynomial_decay, {
151 152 153 154
                "learning_rate": 1.0,
                "decay_steps": 5,
                "cycle": False
            }),
155
            (piecewise_decay, layers.piecewise_decay, {
156 157 158
                "boundaries": [3, 6, 9],
                "values": [0.1, 0.2, 0.3, 0.4]
            }),
S
shippingwang 已提交
159 160 161 162 163
            (cosine_decay, layers.cosine_decay, {
                "learning_rate": 0.1,
                "step_each_epoch": 100,
                "epochs": 120
            }),
Q
Qiao Longfei 已提交
164 165
        ]

166
        for py_decay_fn, fluid_decay_fn, kwargs in decay_fns:
167 168
            print("class=" + self.__class__.__name__ + "decay_fn=" +
                  py_decay_fn.__name__ + " kwargs=" + str(kwargs))
Q
Qiao Longfei 已提交
169 170 171
            main_program = framework.Program()
            startup_program = framework.Program()
            with framework.program_guard(main_program, startup_program):
172
                self.check_decay(py_decay_fn, fluid_decay_fn, kwargs)
Q
Qiao Longfei 已提交
173 174


175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
def linear_lr_warmup(global_step, warmup_steps, start_lr, end_lr):
    linear_step = end_lr - start_lr
    decayed_lr = start_lr + linear_step * (global_step / warmup_steps)
    return decayed_lr


class TestLinearWamrupLearningRateDecay(TestLearningRateDecay):
    def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
                               kwargs):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()

        warmup_steps = 10
        start_lr = 1. / 3.
        end_lr = 0.1

        with fluid.program_guard(main_prog, startup_prog):
            decayed_lr = layers.linear_lr_warmup(
                fluid_decay_fn(**kwargs), warmup_steps, start_lr, end_lr)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)

        for step in range(20):
            lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
            if step < warmup_steps:
                python_decayed_lr = linear_lr_warmup(
                    float(step), warmup_steps, start_lr, end_lr)
            else:
                python_decayed_lr = python_decay_fn(
                    global_step=float(step), **kwargs)
            self.assertAlmostEqual(
                python_decayed_lr,
                lr_val[0],
                msg='Test {0} Failed, step {1}, Python result is {2}, Fluid result is {3}'.
                format(python_decay_fn.__name__,
                       str(step), str(python_decayed_lr), str(lr_val[0])))


Q
Qiao Longfei 已提交
215 216
if __name__ == '__main__':
    unittest.main()