histogram_kernel.cu 5.7 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/histogram_kernel.h"
H
hong 已提交
17

18 19
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
H
hong 已提交
20 21 22 23

#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"

24 25
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
H
hong 已提交
26

27
namespace phi {
H
hong 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

using IndexType = int64_t;
using paddle::platform::PADDLE_CUDA_NUM_THREADS;

inline int GET_BLOCKS(const int N) {
  return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS;
}

template <typename T, typename IndexType>
__device__ static IndexType GetBin(T input_value,
                                   T min_value,
                                   T max_value,
                                   int64_t nbins) {
  IndexType bin = static_cast<int>((input_value - min_value) * nbins /
                                   (max_value - min_value));
  IndexType output_index = bin < nbins - 1 ? bin : nbins - 1;
  return output_index;
}

template <typename T, typename IndexType>
__global__ void KernelHistogram(const T* input,
                                const int total_elements,
                                const int64_t nbins,
                                const T min_value,
                                const T max_value,
                                int64_t* output) {
  extern __shared__ int64_t buf_hist[];
  for (int i = threadIdx.x; i < nbins; i += blockDim.x) {
    buf_hist[i] = 0;
  }
  __syncthreads();

  CUDA_KERNEL_LOOP(input_index, total_elements) {
    // const IndexType input_index = threadIdx.x + blockIdx.x * blockDim.x;
    const auto input_value = input[input_index];
    if (input_value >= min_value && input_value <= max_value) {
      const IndexType output_index =
          GetBin<T, IndexType>(input_value, min_value, max_value, nbins);
      paddle::platform::CudaAtomicAdd(&buf_hist[output_index], 1);
    }
  }
  __syncthreads();

  for (int i = threadIdx.x; i < nbins; i += blockDim.x) {
    paddle::platform::CudaAtomicAdd(&output[i], buf_hist[i]);
  }
}

template <typename T, typename Context>
void HistogramKernel(const Context& dev_ctx,
                     const DenseTensor& input,
                     int64_t bins,
                     int min,
                     int max,
                     DenseTensor* output) {
  auto& nbins = bins;
  auto& minval = min;
  auto& maxval = max;

  const T* input_data = input.data<T>();
  const int input_numel = input.numel();

  int64_t* out_data = output->mutable_data<int64_t>(dev_ctx.GetPlace());
91
  phi::funcs::SetConstant<Context, int64_t>()(
H
hong 已提交
92 93 94 95 96 97 98 99
      dev_ctx, output, static_cast<int64_t>(0));

  if (input_data == nullptr) return;

  T output_min = static_cast<T>(minval);
  T output_max = static_cast<T>(maxval);

  if (output_min == output_max) {
100
    auto input_x = phi::EigenVector<T>::Flatten(input);
H
hong 已提交
101 102 103 104

    DenseTensor input_min_t, input_max_t;
    auto* input_min_data = input_min_t.mutable_data<T>({1}, dev_ctx.GetPlace());
    auto* input_max_data = input_max_t.mutable_data<T>({1}, dev_ctx.GetPlace());
105 106
    auto input_min_scala = phi::EigenScalar<T>::From(input_min_t);
    auto input_max_scala = phi::EigenScalar<T>::From(input_max_t);
H
hong 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

    auto* place = dev_ctx.eigen_device();
    input_min_scala.device(*place) = input_x.minimum();
    input_max_scala.device(*place) = input_x.maximum();

    DenseTensor input_min_cpu, input_max_cpu;
    paddle::framework::TensorCopySync(
        input_min_t, paddle::platform::CPUPlace(), &input_min_cpu);
    paddle::framework::TensorCopySync(
        input_max_t, paddle::platform::CPUPlace(), &input_max_cpu);

    output_min = input_min_cpu.data<T>()[0];
    output_max = input_max_cpu.data<T>()[0];
  }
  if (output_min == output_max) {
    output_min = output_min - 1;
    output_max = output_max + 1;
  }

126 127 128 129 130 131
  PADDLE_ENFORCE_EQ((std::isinf(static_cast<float>(output_min)) ||
                     std::isnan(static_cast<float>(output_max)) ||
                     std::isinf(static_cast<float>(output_min)) ||
                     std::isnan(static_cast<float>(output_max))),
                    false,
                    phi::errors::OutOfRange("range of min, max is not finite"));
H
hong 已提交
132 133 134
  PADDLE_ENFORCE_GE(
      output_max,
      output_min,
135
      phi::errors::InvalidArgument(
H
hong 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
          "max must be larger or equal to min. If min and max are both zero, "
          "the minimum and maximum values of the data are used. "
          "But received max is %d, min is %d",
          maxval,
          minval));

  auto stream = dev_ctx.stream();
  KernelHistogram<T, IndexType><<<GET_BLOCKS(input_numel),
                                  PADDLE_CUDA_NUM_THREADS,
                                  nbins * sizeof(int64_t),
                                  stream>>>(
      input_data, input_numel, nbins, output_min, output_max, out_data);
}

150
}  // namespace phi
H
hong 已提交
151 152 153 154

PT_REGISTER_KERNEL(histogram,
                   GPU,
                   ALL_LAYOUT,
155
                   phi::HistogramKernel,
H
hong 已提交
156 157 158 159
                   float,
                   double,
                   int,
                   int64_t) {}