dist_model.cc 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/distributed/fleet_executor/dist_model.h"

17
#include <glog/logging.h>
18

19
#include <chrono>  // NOLINT
20

21 22
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
23
#include "paddle/fluid/framework/block_desc.h"
24
#include "paddle/fluid/framework/feed_fetch_method.h"
25
#include "paddle/fluid/framework/naive_executor.h"
26
#include "paddle/fluid/framework/op_proto_maker.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"

namespace paddle {
namespace distributed {

namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
    return true;
  }
  return false;
}
44 45 46 47 48

bool LoadDataFromDistModelTensor(const DistModelTensor &input_data,
                                 framework::LoDTensor *input_tensor,
                                 const platform::Place &place) {
  VLOG(3) << "Loading data from DistModelTensor for " << input_data.name;
49
  framework::DDim dims = phi::make_ddim(input_data.shape);
50 51 52 53 54 55 56
  void *input_tensor_ptr;
  if (input_data.dtype == DistModelDataType::INT64) {
    input_tensor_ptr = input_tensor->mutable_data<int64_t>(dims, place);
  } else if (input_data.dtype == DistModelDataType::FLOAT32) {
    input_tensor_ptr = input_tensor->mutable_data<float>(dims, place);
  } else if (input_data.dtype == DistModelDataType::INT32) {
    input_tensor_ptr = input_tensor->mutable_data<int32_t>(dims, place);
57 58
  } else if (input_data.dtype == DistModelDataType::FLOAT16) {
    input_tensor_ptr = input_tensor->mutable_data<float16>(dims, place);
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  } else {
    LOG(ERROR) << "unsupported feed type " << input_data.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_tensor_ptr,
      paddle::platform::errors::Fatal(
          "LoDTensor creation failed. DistModel loaded data failed."));
  PADDLE_ENFORCE_NOT_NULL(input_data.data.data(),
                          paddle::platform::errors::InvalidArgument(
                              "DistModelTensor contains no data."));

  if (platform::is_cpu_place(place)) {
    VLOG(3) << "Loading data for CPU.";
74 75
    std::memcpy(static_cast<void *>(input_tensor_ptr),
                input_data.data.data(),
76 77 78 79 80
                input_data.data.length());
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Loading data for GPU.";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
L
Leo Chen 已提交
81
    auto *dev_ctx = dynamic_cast<const phi::GPUContext *>(pool.Get(place));
82
    auto gpu_place = place;
83 84 85 86 87 88
    memory::Copy(gpu_place,
                 static_cast<void *>(input_tensor_ptr),
                 platform::CPUPlace(),
                 input_data.data.data(),
                 input_data.data.length(),
                 dev_ctx->stream());
89 90 91
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Paddle wasn't compiled with CUDA, but place is GPU."));
92 93 94 95 96 97 98 99 100 101 102 103 104
#endif
  } else if (platform::is_xpu_place(place)) {
    VLOG(3) << "Loading data for XPU.";
#if defined(PADDLE_WITH_XPU)
    auto xpu_place = place;
    memory::Copy(xpu_place,
                 static_cast<void *>(input_tensor_ptr),
                 platform::CPUPlace(),
                 input_data.data.data(),
                 input_data.data.length());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Paddle wasn't compiled with XPU, but place is XPU."));
105 106 107
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
108
        "DistModel only supports CPU and GPU and XPU."));
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  }

  framework::LoD dst_lod;
  for (auto &src_lod : input_data.lod) {
    dst_lod.emplace_back(src_lod);
  }
  input_tensor->set_lod(dst_lod);
  return true;
}

std::string DistModelDTypeToString(DistModelDataType dtype) {
  switch (dtype) {
    case DistModelDataType::FLOAT32:
      return "float32";
    case DistModelDataType::FLOAT16:
      return "float16";
    case DistModelDataType::INT64:
      return "int64";
    case DistModelDataType::INT32:
      return "int32";
    case DistModelDataType::INT8:
      return "int8";
  }
  return "NOT SUPPORT DTYPE";
}

class DistModelTimer {
 public:
  void tic() { tic_time = std::chrono::high_resolution_clock::now(); }
  double toc() {
    std::chrono::high_resolution_clock::time_point toc_time =
        std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> time_elapse =
        std::chrono::duration_cast<std::chrono::duration<double>>(toc_time -
                                                                  tic_time);
    double time_elapse_in_ms =
        static_cast<double>(time_elapse.count()) * 1000.0;
    return time_elapse_in_ms;
  }

 private:
  std::chrono::high_resolution_clock::time_point tic_time;
};

153 154 155
}  // namespace

bool DistModel::Init() {
156
  carrier_id_ = "inference";
157
  bool init_method = (!config_.model_dir.empty() || config_.program_desc);
158 159
  PADDLE_ENFORCE_EQ(init_method,
                    true,
160 161 162 163 164
                    platform::errors::InvalidArgument(
                        "One of model dir or program desc must be provided to "
                        "dist model inference."));
  if (config_.program_desc) {
    PADDLE_ENFORCE_NOT_NULL(
165 166 167 168
        config_.scope,
        platform::errors::InvalidArgument(
            "Scope must be provided to dist model inference if "
            "program desc has been provided."));
169
  }
170
  if (!PreparePlace()) {
171 172
    return false;
  }
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
  if (!config_.program_desc) {
    if (config_.scope) {
      LOG(WARNING) << "The provided scope will be ignored if model dir has "
                      "also been provided.";
    }
    if (!PrepareScope()) {
      return false;
    }
    if (!PrepareProgram()) {
      return false;
    }
  } else {
    program_.reset(config_.program_desc);
    scope_.reset(config_.scope);
  }
188 189 190
  if (!PrepareFeedAndFetch()) {
    return false;
  }
Y
Yuang Liu 已提交
191
  if (config_.nranks > 1 && !CommInit()) {
192 193
    return false;
  }
194 195 196
  if (!PrepareFleetExe()) {
    return false;
  }
197 198 199
  return true;
}

200 201 202 203 204
bool DistModel::PreparePlace() {
  if (config_.place == "GPU") {
    place_ = paddle::platform::CUDAPlace(config_.device_id);
  } else if (config_.place == "CPU") {
    place_ = paddle::platform::CPUPlace();
205 206
  } else if (config_.place == "XPU") {
    place_ = paddle::platform::XPUPlace(config_.device_id);
207 208
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
209 210
        "Place must be choosen from GPU or CPU or XPU, but got %s.",
        config_.place));
211 212 213 214
  }
  return true;
}

215
bool DistModel::CommInit() {
216 217 218
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  std::vector<int64_t> &ring_ids =
      config_.rank_to_ring_ids_[config_.local_rank];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = config_.ring_id_to_ranks_[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = config_.ring_id_to_ranks_[ring_id];
    for (int64_t rank : ranks) {
      if (config_.local_rank == rank) {
        break;
      }
      rank_in_group += 1;
    }
234
    std::vector<std::string> peer_endpoints;
235 236
    for (int64_t rank : ranks) {
      if (config_.local_rank == rank) {
237 238
        continue;
      }
239
      peer_endpoints.emplace_back(config_.trainer_endpoints[rank]);
240
    }
241 242 243 244 245 246
    InsertCommOp(var_name_base + std::to_string(order),
                 ranks_in_group,
                 rank_in_group,
                 peer_endpoints,
                 comm_init_block,
                 ring_id);
247
    order += 1;
248 249 250 251 252 253
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
254 255 256
  return true;
}

257 258 259
void DistModel::InsertCommOp(std::string tmp_var_name,
                             int nranks,
                             int rank,
260
                             const std::vector<std::string> &peer_endpoints,
261 262
                             framework::BlockDesc *block,
                             int ring_id) {
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  std::string &endpoint = config_.current_endpoint;
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.place == "GPU") {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint", config_.current_endpoint);
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
bool DistModel::PrepareScope() {
  scope_.reset(new framework::Scope());
  return true;
}

bool DistModel::PrepareProgram() {
  if (!LoadProgram()) {
    return false;
  }
  if (!LoadParameters()) {
    return false;
  }
  return true;
}

bool DistModel::LoadProgram() {
  VLOG(3) << "Loading program from " << config_.model_dir;
327
  PADDLE_ENFORCE_NE(
328 329
      config_.model_dir,
      "",
330
      platform::errors::InvalidArgument("Model dir must be provided."));
331 332 333 334 335 336
  std::string model_path = config_.model_dir + ".pdmodel";
  framework::proto::ProgramDesc program_proto;
  std::string pb_content;
  // Read binary
  std::ifstream fin(model_path, std::ios::in | std::ios::binary);
  PADDLE_ENFORCE_EQ(
337 338
      static_cast<bool>(fin.is_open()),
      true,
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          model_path));
  fin.seekg(0, std::ios::end);
  pb_content.resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(pb_content.at(0)), pb_content.size());
  fin.close();
  program_proto.ParseFromString(pb_content);
  VLOG(5) << pb_content;
  program_.reset(new framework::ProgramDesc(program_proto));
  return true;
}

bool DistModel::LoadParameters() {
  VLOG(3) << "Loading parameters from " << config_.model_dir;
  PADDLE_ENFORCE_NOT_NULL(program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The program should be loaded first."));
  const auto &global_block = program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();
      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);
      params.push_back(new_var->Name());
377 378
      // NOTE: if the params are stored in different files, 'load' op should be
      // added here
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    }
  }

  std::string param_path = config_.model_dir + ".pdiparams";
  // sort paramlist to have consistent ordering
  std::sort(params.begin(), params.end());
  // append just the load_combine op
  framework::OpDesc *op = load_block->AppendOp();
  op->SetType("load_combine");
  op->SetOutput("Out", params);
  op->SetAttr("file_path", {param_path});
  op->CheckAttrs();

  framework::NaiveExecutor e(place_);
  // Create all persistable variables in root scope to load them from ckpt.
  // Other non-persistable variables will be created in the micro scope
  // managed by fleet executor.
  e.CreateVariables(*program_, 0, true, scope_.get());
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "After loading there are " << scope_->LocalVarNames().size()
          << " vars.";

  return true;
}

405 406
bool DistModel::PrepareFleetExe() {
  task_node_.reset(new TaskNode(program_.get(), config_.local_rank));
407
  // With auto cut, there is no concept of pp, no need to add dependency.
408 409 410 411 412 413 414 415 416 417 418 419
  task_node_->SetType("Compute");
  task_node_->Init();
  executor_desc_ = FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.local_rank);
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.nranks; ++i) {
    RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.trainer_endpoints[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe.reset(new FleetExecutor(executor_desc_));
420 421 422 423 424 425 426
  fleet_exe->Init(carrier_id_,
                  *(program_.get()),
                  scope_.get(),
                  place_,
                  1,
                  {task_node_.get()},
                  id_to_rank);
427 428 429 430 431 432 433
  return true;
}

bool DistModel::PrepareFeedAndFetch() {
  for (auto *op : program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      VLOG(3) << "feed op with feed var: " << op->Output("Out")[0];
R
Ruibiao Chen 已提交
434
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
435 436 437 438
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
      std::string var_name = op->Output("Out")[0];
      feed_names_[var_name] = idx;
      idx_to_feeds_[idx] = var_name;
      framework::VarDesc *real_var = program_->Block(0).FindVar(var_name);
      if (!real_var) {
        LOG(ERROR)
            << "The output of feed ops [" << var_name
            << "] cannot be found in the program. Check the inference program.";
        return false;
      }
      if (real_var->GetDataType() == framework::proto::VarType::FP32) {
        feeds_to_dtype_.insert({var_name, DistModelDataType::FLOAT32});
      } else if (real_var->GetDataType() == framework::proto::VarType::INT32) {
        feeds_to_dtype_.insert({var_name, DistModelDataType::INT32});
      } else if (real_var->GetDataType() == framework::proto::VarType::INT64) {
        feeds_to_dtype_.insert({var_name, DistModelDataType::INT64});
455 456
      } else if (real_var->GetDataType() == framework::proto::VarType::FP16) {
        feeds_to_dtype_.insert({var_name, DistModelDataType::FLOAT16});
457 458 459 460 461
      } else {
        LOG(ERROR) << "Don't support feed var dtype for: "
                   << real_var->GetDataType();
        return false;
      }
462 463
    } else if (op->Type() == "fetch") {
      VLOG(3) << "fetch op with fetch var: " << op->Input("X")[0];
R
Ruibiao Chen 已提交
464
      int idx = PADDLE_GET_CONST(int, op->GetAttr("col"));
465 466 467 468
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
      }
      fetches_[idx] = op;
469 470 471 472
      idx_to_fetches_[idx] = op->Input("X")[0];
    }
  }

473 474 475 476 477 478 479
  if (feeds_.size() == 0) {
    LOG(ERROR) << "No feed ops in the inf program, please check the program.";
    return false;
  }
  if (fetches_.size() == 0) {
    LOG(ERROR) << "No fetch op in the inf program, please check the program.";
    return false;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
  }
  return true;
}

bool DistModel::FeedData(const std::vector<DistModelTensor> &input_data,
                         framework::Scope *scope) {
  VLOG(3) << "DistModel is feeding data.";
  if (input_data.size() != feeds_.size()) {
    LOG(ERROR) << "Should provide " << feeds_.size() << " feeds, but got "
               << input_data.size() << " data.";
    return false;
  }
  feed_tensors_.resize(feeds_.size());
  for (size_t i = 0; i < input_data.size(); ++i) {
    // feed each data separately
    framework::LoDTensor *input_tensor = &(feed_tensors_[i]);
    if (!LoadDataFromDistModelTensor(input_data[i], input_tensor, place_)) {
      LOG(ERROR) << "Fail to load data from tensor " << input_data[i].name;
      return false;
    }
    std::string target_name = input_data[i].name;
    if (feed_names_.find(target_name) == feed_names_.end()) {
      LOG(ERROR) << "The input name [" << target_name
                 << "] cannot be found in the program."
                 << " DistModel loads data failed.";
      return false;
    }
    if (input_data[i].dtype != feeds_to_dtype_[target_name]) {
      LOG(ERROR) << "Feed var [" << target_name << "] expected dtype is: "
                 << DistModelDTypeToString(feeds_to_dtype_[target_name])
                 << ". But received dtype is: "
                 << DistModelDTypeToString(input_data[i].dtype) << ".";
      return false;
    }
    int feed_idx = feed_names_[target_name];
    framework::SetFeedVariable(scope, *input_tensor, "feed", feed_idx);
  }
  return true;
}

bool DistModel::FetchResults(std::vector<DistModelTensor> *output_data,
                             framework::Scope *scope) {
  VLOG(3) << "DistModel is fetch results.";
  output_data->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
R
Ruibiao Chen 已提交
525
    int idx = PADDLE_GET_CONST(int, fetches_[i]->GetAttr("col"));
526 527
    VLOG(3) << "Fetching data for [" << idx_to_fetches_[idx] << "]";
    PADDLE_ENFORCE_EQ(
528 529
        static_cast<size_t>(idx),
        i,
530
        platform::errors::InvalidArgument(
531 532
            "Fetch op's col attr(%d) should be equal to the index(%d)",
            idx,
533 534 535
            i));
    framework::FetchType &fetch_var =
        framework::GetFetchVariable(*scope, "fetch", idx);
R
Ruibiao Chen 已提交
536
    auto &fetch = PADDLE_GET(framework::LoDTensor, fetch_var);
537
    auto type = framework::TransToProtoVarType(fetch.dtype());
538 539 540 541 542 543 544 545 546 547 548 549
    auto output = &(output_data->at(i));
    output->name = idx_to_fetches_[idx];
    bool rst = false;
    if (type == framework::proto::VarType::FP32) {
      rst = FetchResult<float>(fetch, output);
      output->dtype = DistModelDataType::FLOAT32;
    } else if (type == framework::proto::VarType::INT64) {
      rst = FetchResult<int64_t>(fetch, output);
      output->dtype = DistModelDataType::INT64;
    } else if (type == framework::proto::VarType::INT32) {
      rst = FetchResult<int32_t>(fetch, output);
      output->dtype = DistModelDataType::INT32;
550 551 552
    } else if (type == framework::proto::VarType::FP16) {
      rst = FetchResult<float16>(fetch, output);
      output->dtype = DistModelDataType::FLOAT16;
553 554
    } else {
      LOG(ERROR) << "DistModel meets unknown fetch data type. DistModel only "
555 556
                    "supports float32, float16, int64 and int32 fetch type "
                    "for now.";
557 558 559 560
    }
    if (!rst) {
      LOG(ERROR) << "DistModel fails to fetch result " << idx_to_fetches_[idx];
      return false;
561 562 563 564 565
    }
  }
  return true;
}

566 567 568
template <typename T>
bool DistModel::FetchResult(const framework::LoDTensor &fetch,
                            DistModelTensor *output_data) {
569
  auto shape = phi::vectorize(fetch.dims());
570 571 572 573 574 575 576 577 578 579 580 581 582 583
  output_data->shape.assign(shape.begin(), shape.end());
  const T *data = fetch.data<T>();
  int64_t num_elems = fetch.numel();
  output_data->data.Resize(num_elems * sizeof(T));
  // The output of fetch op is always on the cpu, no need switch on place
  memcpy(output_data->data.data(), data, num_elems * sizeof(T));
  output_data->lod.clear();
  for (auto &level : fetch.lod()) {
    output_data->lod.emplace_back(level.begin(), level.end());
  }
  return true;
}

bool DistModel::Run(const std::vector<DistModelTensor> &input_data,
584
                    std::vector<DistModelTensor> *output_data) {
585 586 587 588
  VLOG(3) << "DistModel run for once.";

  DistModelTimer timer;
  timer.tic();
589 590 591
  double feed_elapse = 0;
  double fleet_exe_elapse = 0;
  double fetch_elapse = 0;
592 593 594 595 596

  if (!FeedData(input_data, scope_.get())) {
    LOG(ERROR) << "DistModel failed at feeding data.";
    return false;
  }
597 598 599 600 601 602
  if (config_.enable_timer) {
    feed_elapse = timer.toc();
    LOG(INFO) << "Finish loading data, cost " << feed_elapse << "ms.";
  } else {
    VLOG(3) << "Finish loading data.";
  }
603 604

  fleet_exe->Run(carrier_id_);
605 606 607 608 609 610 611
  if (config_.enable_timer) {
    fleet_exe_elapse = timer.toc();
    LOG(INFO) << "Finish FleetExe running, cost "
              << fleet_exe_elapse - feed_elapse << "ms.";
  } else {
    VLOG(3) << "Finish FleetExe running.";
  }
612 613 614 615 616

  if (!FetchResults(output_data, scope_.get())) {
    LOG(ERROR) << "DistModel failed at fetching result.";
    return false;
  }
617 618 619 620 621 622 623 624 625
  if (config_.enable_timer) {
    fetch_elapse = timer.toc();
    LOG(INFO) << "Finish fetching data, cost "
              << fetch_elapse - fleet_exe_elapse << "ms.";
    LOG(INFO) << "DistModel finish inf, cost " << fetch_elapse << "ms";
  } else {
    VLOG(3) << "Finish fetching data.";
    VLOG(3) << "DistModel finish inf.";
  }
626
  return true;
627 628 629 630
}

}  // namespace distributed
}  // namespace paddle