warpctc_op.cc 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yiqun Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/warpctc_op.h"
Y
Yiqun Liu 已提交
16

H
Huihuang Zheng 已提交
17 18
#include <memory>

W
Wu Yi 已提交
19 20 21 22
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

Y
Yiqun Liu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
namespace paddle {
namespace operators {

class WarpCTCOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Logits"),
                   "Input(Logits) of WarpCTCOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"),
                   "Input(Label) of WarpCTCOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("WarpCTCGrad"),
                   "Output(WarpCTCGrad) of WarpCTCOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of WarpCTCOp should not be null.");

    auto logits_dims = ctx->GetInputDim("Logits");
    int blank = ctx->Attrs().Get<int>("blank");
42 43 44 45 46 47 48 49
    int sequence_width = 0;

    if (ctx->HasInput("LogitsLength")) {
      sequence_width = logits_dims[2];
    } else {
      sequence_width =
          static_cast<int>(framework::product(logits_dims) / logits_dims[0]);
    }
Y
Yiqun Liu 已提交
50 51 52
    PADDLE_ENFORCE((blank >= 0) && (blank < sequence_width),
                   "The value of Attr(blank) should be in interval [0, %d).",
                   sequence_width);
53

Y
Yiqun Liu 已提交
54
    // TODO(liuyiqun): it is tricky to set the wrong dimension here.
W
whs 已提交
55
    ctx->SetOutputDim("Loss", {-1, 1});
Y
Yiqun Liu 已提交
56 57 58 59 60
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
W
Wu Yi 已提交
61 62
    framework::LibraryType library_{framework::LibraryType::kPlain};
    framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
63 64 65
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Logits"),
        ctx.device_context(), layout_, library_);
Y
Yiqun Liu 已提交
66 67 68 69 70
  }
};

class WarpCTCOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
71
  void Make() override {
Y
Yiqun Liu 已提交
72
    AddInput("Logits",
73 74 75 76 77 78 79 80 81 82 83
             "(2-D LoDTensor<float>) or (3-D Tensor<float>), the "
             "unscaled probabilities of variable-length sequences."
             "When is a 2-D Tensor with LoD information, "
             "it's shape is [Lp, num_classes + 1], "
             "where Lp is the sum of all input sequences' length "
             "and num_classes is the true number of classes "
             "(not including the blank label)."
             "When it is 3-D Tensor, it's shape is "
             "[max_logit_length, batch_size, num_classes + 1], "
             "where max_logit_length is the length of the longest "
             "logit sequence.");
Y
Yiqun Liu 已提交
84
    AddInput("Label",
85 86 87 88 89 90 91 92 93 94 95 96 97 98
             "(2-D LoDTensor<int>) or (2-D Tensor<int>), the "
             "ground truth of variable-length sequence. "
             "When it is a 2-D Tensor with LoD information, "
             "it is of the shape [Lg, 1], where Lg is th sum of "
             "all labels' length."
             "When it is a 2-D Tensor<int>, it's shape is also [Lg, 1].");
    AddInput("LogitsLength",
             "1-D Tensor<int64_t>. "
             "Input sequence length for Logits when Logits is a 3-D tensor.")
        .AsDispensable();
    AddInput("LabelLength",
             "1-D Tensor<int64_t>. "
             "Target sequence length for Label when Label is a 2-D tensor.")
        .AsDispensable();
Y
Yiqun Liu 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    AddOutput("WarpCTCGrad",
              "(Tensor, default: Tensor<float>), a temporary "
              "output Tensor to store the gradients of warp-ctc, which is "
              "computed with loss together in one call. It is a 3-D Tensor of "
              "the shape [max_sequence_length, batch_size, num_classes + 1].")
        .AsIntermediate();
    AddOutput("Loss",
              "(Tensor, default: Tensor<float>), the Connectionist "
              "Temporal Classification (CTC) loss, which is a 2-D Tensor of "
              "the shape [batch_size, 1]");
    AddAttr<int>("blank",
                 "(int, default: 0), the blank label of Connectionist "
                 "Temporal Classification (CTC) loss, which is in the "
                 "half-opened interval [0, num_classes + 1).")
        .SetDefault(0);
    AddAttr<bool>("norm_by_times",
                  "(bool, default: false), whether to "
                  "normalize the gradients by the number of time-step, "
                  "which is also the sequence's length.")
        .SetDefault(false);
    AddComment(R"DOC(
An operator integrating the open-source
[warp-ctc](https://github.com/baidu-research/warp-ctc) library, which is used in
[Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin](
https://arxiv.org/pdf/1512.02595v1.pdf),
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with ctc, since a native softmax activation is
interated to the warp-ctc library, to to normlize values for each row of the
input tensor.

More detail of CTC loss can be found by refering to
[Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks](
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf).
)DOC");
  }
};

H
hong 已提交
137 138
template <typename T>
class WarpCTCGradOpMaker : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
139
 public:
H
hong 已提交
140
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
141 142

 protected:
H
hong 已提交
143 144
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
H
Huihuang Zheng 已提交
145 146 147

    op->SetType("warpctc_grad");

H
hong 已提交
148 149 150
    op->SetInput("WarpCTCGrad", this->Output("WarpCTCGrad"));
    op->SetInput("Logits", this->Input("Logits"));
    op->SetInput(framework::GradVarName("Loss"), this->OutputGrad("Loss"));
H
Huihuang Zheng 已提交
151

H
hong 已提交
152
    op->SetInput("LogitsLength", this->Input("LogitsLength"));
153

H
hong 已提交
154
    op->SetOutput(framework::GradVarName("Logits"), this->InputGrad("Logits"));
H
Huihuang Zheng 已提交
155

H
hong 已提交
156
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
157 158 159 160
    return op;
  }
};

Y
Yiqun Liu 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
class WarpCTCGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("WarpCTCGrad"),
                   "Input(WarpCTCGrad) of WarpCTCGradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
                   "Output(Logits@GRAD) of WarpCTCGradOp should not be null.");
    ctx->SetOutputDim(framework::GradVarName("Logits"),
                      ctx->GetInputDim("Logits"));
    ctx->ShareLoD("Logits", /*->*/ framework::GradVarName("Logits"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
178 179 180
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Loss")),
                                   ctx.device_context());
Y
Yiqun Liu 已提交
181 182 183
  }
};

184 185 186
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(WarpCTCGradOpNoNeedBufferVarInference,
                                      "Logits");

Y
Yiqun Liu 已提交
187 188 189 190
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
191
REGISTER_OPERATOR(warpctc, ops::WarpCTCOp, ops::WarpCTCOpMaker,
H
hong 已提交
192 193
                  ops::WarpCTCGradOpMaker<paddle::framework::OpDesc>,
                  ops::WarpCTCGradOpMaker<paddle::imperative::OpBase>);
194 195
REGISTER_OPERATOR(warpctc_grad, ops::WarpCTCGradOp,
                  ops::WarpCTCGradOpNoNeedBufferVarInference);
Y
Yiqun Liu 已提交
196 197 198 199 200
REGISTER_OP_CPU_KERNEL(
    warpctc, ops::WarpCTCKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    warpctc_grad,
    ops::WarpCTCGradKernel<paddle::platform::CPUDeviceContext, float>);