concat_op.h 8.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <string>
18
#include <utility>
19
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
C
chengduo 已提交
21
#include "paddle/fluid/operators/math/concat_and_split.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/strided_memcpy.h"
23
#include "paddle/fluid/operators/utils.h"
24 25 26

namespace paddle {
namespace operators {
27 28
static inline framework::DDim ComputeAndCheckShape(
    const bool is_runtime, const std::vector<framework::DDim>& inputs_dims,
29
    const size_t axis) {
30 31 32 33
  const size_t n = inputs_dims.size();
  auto out_dims = inputs_dims[0];
  size_t in_zero_dims_size = out_dims.size();
  for (size_t i = 1; i < n; i++) {
34 35 36 37 38 39 40
    PADDLE_ENFORCE_EQ(inputs_dims[i].size(), out_dims.size(),
                      platform::errors::InvalidArgument(
                          "The shape of input[0] and input[%d] "
                          "is expected to be equal."
                          "But received input[0]'s shape = "
                          "[%s], input[%d]'s shape = [%s].",
                          i, inputs_dims[0], i, inputs_dims[i]));
41 42 43 44 45
    for (size_t j = 0; j < in_zero_dims_size; j++) {
      if (j == axis) {
        if (is_runtime) {
          out_dims[axis] += inputs_dims[i][j];
        } else {
46
          if (inputs_dims[i][j] == -1 || out_dims[j] == -1) {
47 48 49 50 51 52 53 54 55 56
            out_dims[axis] = -1;
          } else {
            out_dims[axis] += inputs_dims[i][j];
          }
        }
      } else {
        bool check_shape =
            is_runtime || (out_dims[j] > 0 && inputs_dims[i][j] > 0);
        if (check_shape) {
          // check all shape in run time
57 58 59 60 61 62 63
          PADDLE_ENFORCE_EQ(inputs_dims[0][j], inputs_dims[i][j],
                            platform::errors::InvalidArgument(
                                "The %d-th dimension of input[0] and input[%d] "
                                "is expected to be equal."
                                "But received input[0]'s shape = "
                                "[%s], input[%d]'s shape = [%s].",
                                j, i, inputs_dims[0], i, inputs_dims[i]));
64
        }
65 66 67
        if (!is_runtime && out_dims[j] == -1 && inputs_dims[i][j] > 0) {
          out_dims[j] = inputs_dims[i][j];
        }
68 69 70 71 72
      }
    }
  }
  return out_dims;
}
73

74
static inline int64_t ComputeAxis(int64_t axis, int64_t rank) {
75 76 77 78 79
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank, true,
      platform::errors::InvalidArgument(
          "The axis is expected to be in range of [%d, %d), but got %d", -rank,
          rank, axis));
80 81 82 83 84 85
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

Q
QI JUN 已提交
86
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
87
class ConcatKernel : public framework::OpKernel<T> {
88 89
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
90 91
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    framework::LoDTensor* out = ctx.Output<framework::LoDTensor>("Out");
92 93 94
    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    auto axis = ctx.Attr<int>("axis");
    bool need_resize_out_dims = false;
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
      need_resize_out_dims = true;
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));

    if (need_resize_out_dims) {
      const size_t n = ins.size();
      std::vector<framework::DDim> ins_dims(n);
      for (size_t i = 0; i < n; i++) {
        ins_dims[i] = ins[i]->dims();
      }

      framework::DDim out_dims = ComputeAndCheckShape(true, ins_dims, axis);
      out->Resize(out_dims);
    }
Y
Yancey1989 已提交
115 116
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
C
chengduoZH 已提交
117

118 119 120 121 122 123 124 125 126 127 128
    // If axis is 0, the lod of the output is not the same as inputs.
    if (axis == 0 && ins[0]->lod().size() > 0) {
      size_t lod_size_0 = ins[0]->lod().size();
      size_t lod_size = lod_size_0;
      for (size_t i = 1; i < ins.size(); ++i) {
        if (ins[i]->lod().size() > 0) {
          PADDLE_ENFORCE_EQ(
              ins[i]->lod().size(), lod_size_0,
              platform::errors::Unimplemented(
                  "The lod level of all input LoDTensors should be same. "
                  "Maybe different lod level of input LoDTensors can concat,"
129 130 131
                  "it is not supported currently. The lod level of %dth input "
                  "is %d and first input is %d.",
                  i, ins[i]->lod().size(), lod_size_0));
132 133 134 135 136 137 138 139 140 141 142 143 144 145
        } else {
          lod_size = 0;
          break;
        }
      }
      if (lod_size) {
        auto* out_lod = out->mutable_lod();
        for (size_t i = 1; i < ins.size(); ++i) {
          auto in_lod = ConvertToLengthBasedLoD(ins[i]->lod());
          AppendLoD(out_lod, in_lod);
        }
      }
    }

C
chengduoZH 已提交
146 147 148 149
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && ins.size() < 10) {
      size_t output_offset = 0;
      for (auto* in : ins) {
150 151 152
        if (!in || in->numel() == 0UL) {
          continue;
        }
C
chengduoZH 已提交
153 154 155 156 157 158 159 160
        auto in_stride = framework::stride_numel(in->dims());
        auto out_stride = framework::stride_numel(out->dims());
        StridedNumelCopyWithAxis<T>(ctx.device_context(), axis,
                                    out->data<T>() + output_offset, out_stride,
                                    in->data<T>(), in_stride, in_stride[axis]);
        output_offset += in_stride[axis];
      }
    } else {
161
      std::vector<framework::Tensor> inputs;
C
chengduoZH 已提交
162
      for (size_t j = 0; j < ins.size(); ++j) {
163 164 165 166 167
        if (ins[j] && ins[j]->numel() > 0) {
          inputs.push_back(*ins[j]);
        } else {
          continue;
        }
C
chengduoZH 已提交
168 169 170 171
      }
      auto& dev_ctx = ctx.template device_context<DeviceContext>();
      paddle::operators::math::ConcatFunctor<DeviceContext, T> concat_functor;
      concat_functor(dev_ctx, inputs, static_cast<int>(axis), out);
172 173 174 175
    }
  }
};

Q
QI JUN 已提交
176
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
177
class ConcatGradKernel : public framework::OpKernel<T> {
178 179
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
Q
qiaolongfei 已提交
180 181
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
182
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
H
hong 已提交
183
    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
184 185 186 187 188 189 190 191 192 193 194 195
    auto outs =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));

    {
      auto dx = outs;
      auto x = ins;
      for (size_t i = 0; i < dx.size(); ++i) {
        if (dx[i] != nullptr) {
          dx[i]->set_lod(x[i]->lod());
        }
      }
    }
196 197 198
    PADDLE_ENFORCE_NOT_NULL(ins[0],
                            platform::errors::NotFound(
                                "The first input tensor is not initalized."));
Y
Yancey1989 已提交
199

200 201 202 203 204 205 206
    auto axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
Q
qiaolongfei 已提交
207 208 209
    // get output tensor that the name is not kEmptyVarName
    std::vector<framework::Tensor*> outputs;
    for (size_t j = 0; j < outs.size(); ++j) {
210 211
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
Q
qiaolongfei 已提交
212 213 214 215 216 217
        outs[j]->mutable_data<T>(ctx.GetPlace());
        outputs.push_back(outs[j]);
      } else {
        outputs.push_back(nullptr);
      }
    }
C
chengduo 已提交
218
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
Q
qiaolongfei 已提交
219

C
chengduoZH 已提交
220 221
    // Sometimes direct copies will be faster, this maybe need deeply analysis.
    if (axis == 0 && outs.size() < 10) {
C
chengduo 已提交
222 223 224
      std::vector<const framework::Tensor*> ref_shape;
      ref_shape.insert(ref_shape.begin(), ins.begin(), ins.end());
      StridedMemcpyWithAxis0<T>(dev_ctx, *out_grad, ref_shape, &outputs);
C
chengduoZH 已提交
225
    } else {
C
chengduo 已提交
226 227 228
      math::SplitFunctor<DeviceContext, T> split_functor;
      split_functor(dev_ctx, *out_grad, ctx.MultiInput<framework::Tensor>("X"),
                    static_cast<int>(axis), &outputs);
C
chengduoZH 已提交
229
    }
230 231 232 233 234
  }
};

}  // namespace operators
}  // namespace paddle