fused_embedding_seq_pool_op.h 7.9 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <vector>

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
using DDim = framework::DDim;

template <typename T>
class LookupTableKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
    auto *table_var = context.InputVar("W");

    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
    int64_t ids_numel = ids_t->numel();

    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];

      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], row_number);
          PADDLE_ENFORCE_GE(ids[i], 0, "ids %d", i);
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
        }
      }
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
      for (int64_t i = 0; i < ids_numel; ++i) {
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_GE(ids[i], 0);
          auto id_index = table_t.Index(ids[i]);
          PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
          // memcpy(output + i * row_width, table + id_index * row_width,
          // row_width * sizeof(T));
          blas.VCOPY(row_width, table + id_index * row_width,
                     output + i * row_width);
        }
      }
    }
  }
};

template <typename T>
class LookupTableGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
    }

    bool is_sparse = context.Attr<bool>("is_sparse");
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    if (is_sparse) {
      // auto start = std::chrono::system_clock::now();
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));

      auto *ids_data = ids->data<int64_t>();
      int64_t ids_num = ids->numel();
      // auto end = std::chrono::system_clock::now();
      // std::chrono::duration<double> diff = end - start;

      // auto copy_start = std::chrono::system_clock::now();
      std::vector<int64_t> new_rows;
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
      // for (int64_t i = 0; i < ids_num; i++) {
      // new_rows.push_back(ids_data[i]);
      // }
      // auto copy_end = std::chrono::system_clock::now();
      // std::chrono::duration<double> copy_diff = copy_end - copy_start;
      // diff += copy_diff;
      // LOG(ERROR) << "run emb_grad copy end, cost: " << copy_diff.count() << "
      // " << ids_num;

      // copy_start = std::chrono::system_clock::now();
      d_table->set_rows(new_rows);

      auto *d_table_value = d_table->mutable_value();
      d_table_value->Resize({ids_num, table_dim[1]});
      d_table_value->ShareDataWith(*d_output);
      // d_table_value->mutable_data<T>(context.GetPlace());

      // // copy_end = std::chrono::system_clock::now();
      // // copy_diff = copy_end - copy_start;
      // // diff += copy_diff;
      // // LOG(ERROR) << "run emb_grad resize table end, cost: " <<
      // // copy_diff.count() << " " << ids_num;

      // // copy_start = std::chrono::system_clock::now();
      // d_table->set_height(table_dim[0]);

      // auto *d_output_data = d_output->data<T>();
      // auto *d_table_data = d_table_value->data<T>();

      // // copy_end = std::chrono::system_clock::now();
      // // copy_diff = copy_end - copy_start;
      // // diff += copy_diff;
      // // LOG(ERROR) << "run emb_grad set height end, cost: " <<
      // // copy_diff.count() << " " << ids_num;

      // auto d_output_dims = d_output->dims();
      // PADDLE_ENFORCE_EQ(
      // d_table_value->dims(),
      // framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
      // // copy_start = std::chrono::system_clock::now();
      // auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
      // blas.VCOPY(d_output->numel(), d_output_data, d_table_data);
      // cblas_scopy(d_output->numel(), d_output_data, 1, d_table_data, 1);
      // // for (int i = 0; i != d_output->numel(), ++i) {
      // // *(d_table_data++) = *(d_output_data++);
      // // }
      // // memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
      // // copy_end = std::chrono::system_clock::now();
      // // copy_diff = copy_end - copy_start;
      // // diff += copy_diff;
      // // LOG(ERROR) << "run emb_grad core end, cost: " << copy_diff.count()
      // << "
      // // " << ids_num << " " << d_output->numel();

      // // LOG(ERROR) << "run emb_grad end, cost: " << diff.count();
    } else {
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));

      auto *ids_data = ids->data<int64_t>();

      int N = table_dim[0];
      int D = table_dim[1];

      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());

      memset(d_table_data, 0, d_table->numel() * sizeof(T));

      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
        }
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle