reader.py 55.1 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
16
import sys
S
sneaxiy 已提交
17
import six
18
import numpy as np
S
sneaxiy 已提交
19
import threading
20
import paddle
Z
Zeng Jinle 已提交
21
from .framework import Program, Variable, program_guard, default_main_program, default_startup_program, in_dygraph_mode, cpu_places
S
sneaxiy 已提交
22
from .executor import global_scope
23
from .data_feeder import DataFeeder, BatchedTensorProvider
S
sneaxiy 已提交
24
from .layers.io import monkey_patch_reader_methods, _copy_reader_var_, double_buffer
S
sneaxiy 已提交
25
from .unique_name import UniqueNameGenerator
26
import logging
Z
Zeng Jinle 已提交
27
from .dataset import DatasetBase, InMemoryDataset
S
sneaxiy 已提交
28

29 30 31 32 33 34 35 36 37 38 39
### Dygraph DataLoader configs ###
import multiprocessing
import signal
# NOTE: queue has a different name in python2 and python3
if sys.version_info[0] == 2:
    import Queue as queue
else:
    import queue
# NOTE: [ avoid hanging ] This value is used in getting data from another process
MP_CHECK_TIMEOUT = 10

Z
Zeng Jinle 已提交
40 41 42
__all__ = ['PyReader', 'DataLoader']

data_loader_unique_name_generator = UniqueNameGenerator()
S
sneaxiy 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59


def _convert_places(places):
    if not isinstance(places, (list, tuple)):
        places = [places]

    ret = []
    for p in places:
        if not isinstance(p, core.Place):
            tmp = core.Place()
            tmp.set_place(p)
            p = tmp

        ret.append(p)
    return ret


Z
Zeng Jinle 已提交
60 61 62
class DataLoaderBase(object):
    def __init__(self):
        self._places = None
S
sneaxiy 已提交
63

Z
Zeng Jinle 已提交
64 65
    def __call__(self):
        return self
S
sneaxiy 已提交
66

Z
Zeng Jinle 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    def next(self):
        '''
        Get the next item in the DataLoader object. This method    
        should not be called by users directly. It is used for
        implementing iterator protocol of Python 2.x inside
        PaddlePaddle framework.
        '''
        return self.__next__()

    def __iter__(self):
        raise NotImplementedError()

    def __next__(self):
        raise NotImplementedError()


class DataLoader(object):
    @staticmethod
    def from_generator(feed_list=None,
                       capacity=None,
                       use_double_buffer=True,
                       iterable=True,
89
                       return_list=False,
90 91
                       use_multiprocess=False,
                       keep_order=False):
Z
Zeng Jinle 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        """
        Create a DataLoader object for loading data from Python generator. 
        Data would be prefetched using Python thread and be pushed
        into a queue asynchronously.

        The created DataLoader object provides 3 methods to set the data source
        :code:`set_sample_generator` , :code:`set_sample_list_generator` and 
        :code:`set_batch_generator` . Please see the following example codes
        to know their usages.

        If iterable = True, the created DataLoader object is a Python generator
        object, which is iterable using for-range loop.

        If iterable = False, the created DataLoader object provides 
        :code:`start()` and :code:`reset()` method to control the data reading
        process. This mode is designed to be compatible with the 
        :code:`fluid.layers.py_reader` interface. Users can migrate the codes   
        from :code:`fluid.layers.py_reader` to :code:`fluid.io.DataLoader` 
        easily when using iterable=False. 

        Args:  
            feed_list (list(Variable)|tuple(Variable)): feed variable list.
114
                The variables should be created by :code:`fluid.data()`.
Z
Zeng Jinle 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
            capacity (int): capacity of the queue maintained in DataLoader.
                The unit is batch number. Set larger capacity if your reader 
                is fast. 
            use_double_buffer (bool): whether to use double_buffer_reader. 
                If use_double_buffer=True, the DataLoader would prefetch next 
                batch data asynchronously, so it would speed up data feeding 
                and occupies a little more CPU or GPU memory, i.e., the memory
                of one batch input data. 
            iterable (bool): whether the created DataLoader is iterable. 
            return_list (bool): whether the return value on each device is 
                presented as a list. It is only valid when iterable=True. 
                If return_list=False, the return value on each device would 
                be a dict of str -> LoDTensor, where the key of the dict is 
                the name of each feeded variables. If return_list=True, the 
                return value on each device would be a list(LoDTensor). It is
                recommended to use return_list=False in static graph mode and
131 132 133 134 135 136
                use return_list=True in dygraph mode.  
            use_multiprocess (bool): whether to use multi-process to speed up
                the data loading process in dygraph. Note: this parameter only
                can be used in the dygraph mode. In the static graph mode,
                whether this parameter is set or not has no effect.
                The Default value is False.
137 138 139 140 141 142 143 144 145
            keep_order (bool): whether to assign the data to CPU cores or GPU 
                cards in order. Supposing that there are 2 batches and we use 
                2 GPU cards to run the network. If keep_order=True, GPU 0 would 
                get batch 0 and GPU 1 would get batch 1 exactly. If 
                keep_order=False, GPU 0 may get batch 0 or may get batch 1, and 
                GPU 1 may get the rest of the data, which is uncertain. If 
                keep_order=True, the framework may do some synchronization to 
                keep the reading order, which may be slower. The default value 
                is False.
Z
Zeng Jinle 已提交
146 147 148 149 150 151 152

        Returns:
            loader (DataLoader): the created DataLoader object.

        Examples:
            
            .. code-block:: python
S
sneaxiy 已提交
153

Z
Zeng Jinle 已提交
154 155
                import paddle.fluid as fluid
                import numpy as np
156

Z
Zeng Jinle 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                BATCH_NUM = 10 
                BATCH_SIZE = 16
                EPOCH_NUM = 4

                CLASS_NUM = 10

                ITERABLE = True # whether the created DataLoader object is iterable
                USE_GPU = False # whether to use GPU

                DATA_FORMAT = 'batch_generator' # data format of data source user provides 

                def simple_net(image, label):
                    fc_tmp = fluid.layers.fc(image, size=CLASS_NUM)
                    cross_entropy = fluid.layers.softmax_with_cross_entropy(image, label)
                    loss = fluid.layers.reduce_mean(cross_entropy)
                    sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                    sgd.minimize(loss)
                    return loss

                def get_random_images_and_labels(image_shape, label_shape):
                    image = np.random.random(size=image_shape).astype('float32')
                    label = np.random.random(size=label_shape).astype('int64')
                    return image, label

                # If the data generator yields one sample each time,
                # use DataLoader.set_sample_generator to set the data source.
                def sample_generator_creator(): 
                    def __reader__():
                        for _ in range(BATCH_NUM * BATCH_SIZE):
                            image, label = get_random_images_and_labels([784], [1])
                            yield image, label

                    return __reader__

                # If the data generator yield list of samples each time,
                # use DataLoader.set_sample_list_generator to set the data source.
                def sample_list_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM): 
                            sample_list = []
                            for _ in range(BATCH_SIZE):
                                image, label = get_random_images_and_labels([784], [1])
                                sample_list.append([image, label])

                            yield sample_list

                    return __reader__ 

                # If the data generator yields a batch each time, 
                # use DataLoader.set_batch_generator to set the data source.
                def batch_generator_creator():
                    def __reader__():
                        for _ in range(BATCH_NUM):
                            batch_image, batch_label = get_random_images_and_labels([BATCH_SIZE, 784], [BATCH_SIZE, 1]) 
                            yield batch_image, batch_label
H
Huihuang Zheng 已提交
212

Z
Zeng Jinle 已提交
213
                    return __reader__
214

Z
Zeng Jinle 已提交
215 216 217 218 219
                # If DataLoader is iterable, use for loop to train the network 
                def train_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        for data in loader():
                            exe.run(prog, feed=data, fetch_list=[loss])
220

Z
Zeng Jinle 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
                # If DataLoader is not iterable, use start() and reset() method to control the process 
                def train_non_iterable(exe, prog, loss, loader):
                    for _ in range(EPOCH_NUM):
                        loader.start() # call DataLoader.start() before each epoch starts
                        try:
                            while True:
                                exe.run(prog, fetch_list=[loss])
                        except fluid.core.EOFException:
                            loader.reset() # call DataLoader.reset() after catching EOFException 

                def set_data_source(loader, places):
                    if DATA_FORMAT == 'sample_generator':
                        loader.set_sample_generator(sample_generator_creator(), batch_size=BATCH_SIZE, drop_last=True, places=places)
                    elif DATA_FORMAT == 'sample_list_generator':
                        loader.set_sample_list_generator(sample_list_generator_creator(), places=places)
                    elif DATA_FORMAT == 'batch_generator':
                        loader.set_batch_generator(batch_generator_creator(), places=places)
                    else:
                        raise ValueError('Unsupported data format')
240

241 242
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
243

Z
Zeng Jinle 已提交
244 245
                # Define DataLoader 
                loader = fluid.io.DataLoader.from_generator(feed_list=[image, label], capacity=16, iterable=ITERABLE)
246

Z
Zeng Jinle 已提交
247 248
                # Define network
                loss = simple_net(image, label)
S
sneaxiy 已提交
249

Z
Zeng Jinle 已提交
250 251 252 253 254 255 256 257 258
                # Set data source of DataLoader
                #
                # If DataLoader is iterable, places must be given and the number of places must be the same with device number.  
                #  - If you are using GPU, call `fluid.cuda_places()` to get all GPU places. 
                #  - If you are using CPU, call `fluid.cpu_places()` to get all CPU places. 
                # 
                # If DataLoader is not iterable, places can be None.
                places = fluid.cuda_places() if USE_GPU else fluid.cpu_places()
                set_data_source(loader, places)
S
sneaxiy 已提交
259

Z
Zeng Jinle 已提交
260 261
                exe = fluid.Executor(places[0])
                exe.run(fluid.default_startup_program())
H
Huihuang Zheng 已提交
262

Z
Zeng Jinle 已提交
263
                prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
264

Z
Zeng Jinle 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
                if loader.iterable:
                    train_iterable(exe, prog, loss, loader)
                else:
                    train_non_iterable(exe, prog, loss, loader)


                '''
                Users can use return_list = True in dygraph mode. 
                '''
                with fluid.dygraph.guard(places[0]):
                    loader = fluid.io.DataLoader.from_generator(capacity=2, return_list=True)
                    set_data_source(loader, places[0]) 
                    for image, label in loader():
                        relu = fluid.layers.relu(image)
                        assert image.shape == [BATCH_SIZE, 784] 
                        assert label.shape == [BATCH_SIZE, 1]
                        assert relu.shape == [BATCH_SIZE, 784]
        """
283
        if in_dygraph_mode():
284 285 286
            # Dygraph only support multiprocess training when using multi GPUs. 
            # So in each process, we only use 1 GPU card to train the network, 
            # so `keep_order` would also be True.
287 288 289 290 291
            return DygraphGeneratorLoader(feed_list, capacity,
                                          use_double_buffer, iterable,
                                          return_list, use_multiprocess)
        else:
            return GeneratorLoader(feed_list, capacity, use_double_buffer,
292
                                   iterable, return_list, keep_order)
Z
Zeng Jinle 已提交
293 294 295 296 297 298

    @staticmethod
    def from_dataset(dataset, places, drop_last=True):
        """
        Create an iterable DataLoader object for loading data from Dataset.    
        Dataset is only supported in Linux system currently.
299

Z
Zeng Jinle 已提交
300 301 302 303 304 305 306
        Args:
            dataset (InMemoryDataset|QueueDataset): the dataset object.
            places (list(CUDAPlace)|list(CPUPlace)): places where the result 
                data should be converted.   
            drop_last (bool): whether to drop the last batch whose sample 
                number is less than batch size. If drop_last = True, they
                would be dropped. If drop_last = False, they would be kept. 
307

Z
Zeng Jinle 已提交
308 309 310
        Returns:
            loader (DataLoader): the created DataLoader object, which can be 
                treated as a Python generator.   
311

Z
Zeng Jinle 已提交
312 313 314
        Examples:

            .. code-block:: python
315

Z
Zeng Jinle 已提交
316
                import paddle.fluid as fluid
317

318 319
                image = fluid.data(name='image', shape=[None, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
320

Z
Zeng Jinle 已提交
321 322 323 324 325
                dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
                dataset.set_batch_size(32)
                dataset.set_filelist(['a.txt', 'b.txt', 'c.txt'])
                dataset.set_use_var([image, label])
                dataset.set_pipe_command('cat') 
326

Z
Zeng Jinle 已提交
327 328 329
                loader = fluid.io.DataLoader.from_dataset(dataset, fluid.cpu_places())
        """
        return DatasetLoader(dataset, places, drop_last)
S
sneaxiy 已提交
330

S
sneaxiy 已提交
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
class DygraphGeneratorLoader(DataLoaderBase):
    """
    The GeneratorLoader of dygraph

    The multiprocess dygraph GeneratorLoader's most functions are different from 
    static graph GeneratorLoader, Separate implementation to keep code readable.
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=True,
                 use_multiprocess=False):
        self._batch_reader = None
        self._places = None
        self._feed_list = feed_list

        if not capacity:
            raise ValueError("Please give value to capacity.")
        self._capacity = capacity
        self._use_double_buffer = use_double_buffer

        if not iterable:
            logging.warning(
                "Please NOTE: dygraph can support iterable mode only. Change to iterable mode."
            )
        self._iterable = True
        if not return_list:
            logging.warning(
                "Please NOTE: dygraph can support return as list only. Change to return as list."
            )
        self._return_list = True

        # NOTE: the multiprocessing in different platform is incompatible, we will solve it later
        self._use_multiprocess = use_multiprocess
        if self._use_multiprocess and (sys.platform == 'darwin' or
                                       sys.platform == 'win32'):
            logging.warning(
                "NOTE: The multiprocess mode does not currently support MacOs and Windows."
            )
            self._use_multiprocess = False

        if self._use_multiprocess:
            # NOTE: the multiprocessing.Queue used to save loading data in self._process
            self._data_queue = None
            # NOTE: this process is used to load data asynchronously from self._batch_reader
            self._process = None

        # NOTE: the C++ LoDTensorBlockingQueue instance
        self._blocking_queue = None
        # NOTE: 1. In multiprocess mode, this thread is used to get next batch data from
        # self._data_queue, then push it into self._blocking_queue; 2. In singleprocess
        # mode, this thread is used to get next batch data from self._batch_reader, then 
        # push it into self._blocking_queue
        self._thread = None

    @property
    def queue(self):
        return self._blocking_queue

    @property
    def iterable(self):
        return self._iterable

    def _wait_thread_ends(self):
        thread = self._thread
        if thread is not None:
            self._blocking_queue.close()
            thread.join()

    def _wait_process_ends(self):
        process = self._process
        if process is not None:
            self._data_queue.cancel_join_thread()
            self._data_queue.close()
            process.join()
            # erase process id
            core._erase_process_pid(id(self))

    def _init_iterable(self):
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()
        self._var_names = []
        self._shapes = []
        self._dtypes = []
        self._need_check_feed = []
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
422
            core.Variable(), self._capacity, False)
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        self._reader = core.create_py_reader(
            self.queue, self._var_names, self._shapes, self._dtypes,
            self._need_check_feed, self._places, self._use_double_buffer)

    def _start(self):
        if self._use_multiprocess:
            # Set data_queue and process
            self._data_queue = multiprocessing.Queue(self._capacity)
            self._process = multiprocessing.Process(
                target=self._reader_process_loop)
            self._process.daemon = True
            self._process.start()

            # Set child process signal handler
            # NOTE: [ avoiding hang ] 1. if the child process dies due to bus error/segfault
            # or just hang, the main process will hang waiting for data, so here need to deal 
            # with SIGSEGV and SIGBUS of child process; 2. if the main process end before child
            # process, it shuts the all its daemonic children down with a SIGTERM (instead of 
            # joining them without a timeout), so here nedd to deal with SIGTERM.
            self._set_child_signal_handler()

            # Set reader_thread
            self._thread_done_event = threading.Event()
            self._thread = threading.Thread(
                target=self._reader_thread_loop_with_process)
            self._thread.daemon = True
            self._thread.start()
        else:
            self._thread = threading.Thread(target=self._reader_thread_loop)
            self._thread.daemon = True
            self._thread.start()

    def _reset(self):
        self._reader.reset()
        self._wait_thread_ends()
        if self._use_multiprocess:
            self._wait_process_ends()

    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
        assert self._batch_reader is not None, \
            "Data source of DataLoader has not set yet"

        self._init_iterable()
        self._start()
        return self

    def __next__(self):
        try:
            return self._reader.read_next_var_list()
        except StopIteration:
            self._reset()
            six.reraise(*sys.exc_info())

    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError(
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor.")

    def _set_child_signal_handler(self):
        core._set_process_pid(id(self), self._process.pid)
        current_handler = signal.getsignal(signal.SIGCHLD)
        if not callable(current_handler):
            current_handler = None

        def __handler__(signum, frame):
            core._throw_error_if_process_failed()
            if current_handler is not None:
                current_handler(signum, frame)

        signal.signal(signal.SIGCHLD, __handler__)

    def _reader_process_loop(self):
        try:
            # set signal handler
            core._set_process_signal_handler()

            for sample in self._batch_reader():
                if sample is None:
                    raise ValueError(
                        "Sample in reader is None. Please check whether your dataset is valid."
                    )
                self._data_queue.put(sample)
            self._data_queue.put(None)
        except KeyboardInterrupt:
            # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
            pass
        except:
            self._data_queue.cancel_join_thread()
            self._data_queue.close()
            six.reraise(*sys.exc_info())

    def _reader_thread_loop_with_process(self):
        while not self._thread_done_event.is_set():
            try:
                # NOTE: [ avoid hanging ] Even with carefully designed data dependencies 
                # (i.e., a put() always corresponding to a get()), hanging on get() can 
                # still happen when data in queue is corrupted (e.g., due to 
                # Queue.cancel_join_thread or unexpected exit). So we set a timeout whenever 
                # we try to get data from `data_queue`
                sample = self._data_queue.get(timeout=MP_CHECK_TIMEOUT)
            except queue.Empty:
                self._thread_done_event.set()
                logging.error("The reader has not read data for a long time.")

            if not self._thread_done_event.is_set():
                if sample is not None:
                    try:
                        array = core.LoDTensorArray()
                        for item in sample:
                            if not isinstance(item, core.LoDTensor):
                                self._check_input_array(item)
                                tmp = core.LoDTensor()
                                tmp.set(item, core.CPUPlace())
                                item = tmp
                            array.append(item)
                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
                        self._thread_done_event.set()
                        self._blocking_queue.kill()
                        self._data_queue.close()
                        logging.warning(
                            "DygraphDataLoader reader thread raised an exception."
                        )
                        six.reraise(*sys.exc_info())
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
                    self._data_queue.close()
            else:
                self._blocking_queue.kill()
                self._data_queue.close()

    def _reader_thread_loop(self):
        try:
            for sample in self._batch_reader():
                array = core.LoDTensorArray()
                for item in sample:
                    if not isinstance(item, core.LoDTensor):
                        self._check_input_array(item)
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning(
                "DygraphDataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
        self.set_sample_list_generator(
            paddle.batch(
                reader, batch_size=batch_size, drop_last=drop_last),
            places=places)
        return self

    def set_sample_list_generator(self, reader, places=None):
        def __batch_reader_impl__():
            for batch in reader():
                slots = []
                for items in batch:
                    for i, item in enumerate(items):
                        if len(slots) < len(items):
                            slots.append([item])
                        else:
                            slots[i].append(item)
                yield slots

        self.set_batch_generator(__batch_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._batch_reader = reader
        assert places is not None, "Places cannot be None when DataLoader is iterable"
        self._places = _convert_places(places)
        assert len(self._places) == 1, \
            "Number of places must be 1 in dygraph mode"
        return self


Z
Zeng Jinle 已提交
624
class GeneratorLoader(DataLoaderBase):
S
sneaxiy 已提交
625
    def __init__(self,
626 627
                 feed_list=None,
                 capacity=None,
S
sneaxiy 已提交
628
                 use_double_buffer=True,
629
                 iterable=True,
630 631
                 return_list=False,
                 keep_order=False):
S
sneaxiy 已提交
632
        self._tensor_reader = None
Z
Zeng Jinle 已提交
633
        self._places = None
S
sneaxiy 已提交
634
        self._thread = None
635
        self._queue = None
636
        self._feed_list = feed_list
637
        self._exited = False
638 639
        if not capacity:
            raise ValueError("Please give value to capacity.")
640 641 642 643
        self._iterable = iterable
        self._return_list = return_list
        if not self._feed_list:
            raise Exception("Feed list must be given under static mode.")
S
sneaxiy 已提交
644 645
        self._use_double_buffer = use_double_buffer
        self._capacity = capacity
646
        self._keep_order = keep_order
S
sneaxiy 已提交
647 648
        if not self._iterable:
            self._init_non_iterable()
S
sneaxiy 已提交
649

Z
Zeng Jinle 已提交
650
    def _wait_thread_ends(self):
651
        # Get self._thread first to prevent data race, because __thread_main__
Z
Zeng Jinle 已提交
652 653 654 655 656 657 658 659
        # would set self._thread be None at the end
        thread = self._thread
        if thread is not None and self._iterable:
            self._queue.close()
            thread.join()

    def _init_iterable(self):
        self._wait_thread_ends()
660 661 662 663 664 665
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
666 667
        self._queue = core.init_lod_tensor_blocking_queue(
            core.Variable(), self._capacity, self._keep_order)
S
sneaxiy 已提交
668
        self._reader = core.create_py_reader(
669 670
            self.queue, self._var_names, self._shapes, self._dtypes,
            self._need_check_feed, self._places, self._use_double_buffer)
S
sneaxiy 已提交
671 672 673 674 675 676 677

    def _init_non_iterable(self):
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []
678
        need_check_feed = []
S
sneaxiy 已提交
679 680 681 682 683 684 685

        for feed_data in self._feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
686
            need_check_feed.append(int(feed_data.desc.need_check_feed()))
S
sneaxiy 已提交
687

Z
Zeng Jinle 已提交
688 689 690 691
        queue_name = data_loader_unique_name_generator(
            'lod_tensor_blocking_queue')
        reader_name = data_loader_unique_name_generator('create_py_reader')
        double_buffer_name = data_loader_unique_name_generator('double_buffer')
S
sneaxiy 已提交
692

S
sneaxiy 已提交
693
        var = global_scope().var(queue_name)
694 695
        self._queue = core.init_lod_tensor_blocking_queue(var, self._capacity,
                                                          self._keep_order)
S
sneaxiy 已提交
696

697 698 699 700 701 702
        if self._keep_order:
            block = default_main_program().current_block()
        else:
            block = default_startup_program().current_block()

        reader_var = block.create_var(name=reader_name)
S
sneaxiy 已提交
703

704
        dtype_int = [int(t) for t in dtypes]
705
        block.append_op(
S
sneaxiy 已提交
706 707
            type='create_py_reader',
            inputs={'blocking_queue': [queue_name]},
708
            outputs={'Out': [reader_var]},
S
sneaxiy 已提交
709 710 711
            attrs={
                'shape_concat': shape_concat,
                'lod_levels': lod_levels,
712 713
                'dtypes': dtype_int,
                'need_check_feed': need_check_feed,
S
sneaxiy 已提交
714 715 716
                'ranks': ranks
            })

717 718 719 720 721 722 723 724 725 726 727
        reader_var.desc.set_dtypes(dtypes)
        reader_var.persistable = True
        reader_var.stop_gradient = True

        if self._keep_order:
            main_prog_var = reader_var
            reader = main_prog_var
            reader.reset = self._queue.reset
        else:
            main_prog_var = _copy_reader_var_(
                default_main_program().current_block(), reader_var)
S
sneaxiy 已提交
728

729 730
            main_prog_var.stop_gradient = True
            main_prog_var.persistable = True
S
sneaxiy 已提交
731

732
            reader = monkey_patch_reader_methods(main_prog_var)
S
sneaxiy 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

        if self._use_double_buffer:
            double_buffer_reader = double_buffer(
                reader, name=double_buffer_name)
            # we return a double buffer reader. However, the reset method comes from
            # py_reader.
            double_buffer_reader.reset = reader.reset
            reader = double_buffer_reader

        self._reader = reader

        default_main_program().current_block().append_op(
            type='read',
            inputs={'Reader': [self._reader]},
            outputs={'Out': self._feed_list})

    @property
    def queue(self):
        return self._queue

    @property
    def iterable(self):
        return self._iterable
S
sneaxiy 已提交
756

Z
Zeng Jinle 已提交
757 758
    def __iter__(self):
        assert self.iterable, "DataLoader is not iterable"
S
sneaxiy 已提交
759
        assert self._tensor_reader is not None, \
Z
Zeng Jinle 已提交
760
            "Data source of DataLoader has not set yet"
S
sneaxiy 已提交
761

Z
Zeng Jinle 已提交
762
        self._init_iterable()
S
sneaxiy 已提交
763
        self._start()
Z
Zeng Jinle 已提交
764 765 766 767
        return self

    def __next__(self):
        try:
768 769
            if self._return_list:
                return self._reader.read_next_list()
770
            else:
771
                return self._reader.read_next()
Z
Zeng Jinle 已提交
772 773 774 775 776 777
        except StopIteration:
            self._queue.close()
            self._reset()
            six.reraise(*sys.exc_info())

    def start(self):
778 779
        assert not self._iterable, "start() cannot be called when DataLoader is iterable"
        self._start()
Z
Zeng Jinle 已提交
780 781

    def reset(self):
782 783
        assert not self._iterable, "reset() cannot be called when DataLoader is iterable"
        self._reset()
Z
Zeng Jinle 已提交
784

785 786 787 788 789 790 791 792 793 794 795
    @classmethod
    def _check_input_array(cls, item):
        arr = np.array(item)
        if arr.dtype == np.object:
            raise TypeError((
                "\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
                "this means the input data contains nested lists with different lengths. "
                "\n\t* Check the reader function passed to 'decorate_batch_generator'"
                " to locate the data causes this issue.\n\t* Please consider using "
                "'fluid.create_lod_tensor' to convert it to a LoD-Tensor."))

796 797
        return arr

Z
Zeng Jinle 已提交
798 799 800
    def _start(self):
        def __thread_main__():
            try:
801 802 803
                while not self._queue.wait_for_inited(1):
                    if self._exited:
                        return
804

Z
Zeng Jinle 已提交
805 806 807 808
                for tensors in self._tensor_reader():
                    array = core.LoDTensorArray()
                    for item in tensors:
                        if not isinstance(item, core.LoDTensor):
809
                            item = self._check_input_array(item)
Z
Zeng Jinle 已提交
810 811 812 813 814 815 816 817 818 819 820 821
                            tmp = core.LoDTensor()
                            tmp.set(item, core.CPUPlace())
                            item = tmp

                        array.append(item)

                    if not self._queue.push(array):
                        break

                self._queue.close()
                self._thread = None
            except Exception as ex:
Z
Zeng Jinle 已提交
822
                self._queue.kill()
Z
Zeng Jinle 已提交
823 824 825 826 827 828 829
                self._thread = None
                logging.warn('Your reader has raised an exception!')
                six.reraise(*sys.exc_info())

        self._thread = threading.Thread(target=__thread_main__)
        self._thread.daemon = True
        self._thread.start()
S
sneaxiy 已提交
830

S
sneaxiy 已提交
831
    def _reset(self):
832
        self._queue.close()
833
        self._exited = True
Z
Zeng Jinle 已提交
834 835 836 837
        thread = self._thread
        if thread is not None:
            thread.join()

838
        self._exited = False
839 840
        self._reader.reset()

Z
Zeng Jinle 已提交
841 842 843 844 845 846
    def set_sample_generator(self,
                             reader,
                             batch_size,
                             drop_last=True,
                             places=None):
        assert batch_size > 0, "batch_size must be larger than 0"
847 848 849 850 851 852 853
        has_lod = False
        for f in self._feed_list:
            if f.lod_level != 0:
                has_lod = True
                break

        if has_lod:
854 855 856 857 858
            self.set_sample_list_generator(
                paddle.batch(
                    reader, batch_size=batch_size, drop_last=drop_last),
                places=places)
        else:
859 860 861 862 863 864 865
            reader = BatchedTensorProvider(
                feed_list=self._feed_list,
                place=core.CPUPlace(),
                batch_size=batch_size,
                generator=reader,
                drop_last=drop_last)
            self.set_batch_generator(reader, places=places)
Z
Zeng Jinle 已提交
866 867 868
        return self

    def set_sample_list_generator(self, reader, places=None):
869 870 871 872
        with program_guard(Program(), Program()):
            feeder = DataFeeder(
                feed_list=self._feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(reader, multi_devices=False)
Z
Zeng Jinle 已提交
873

874 875 876
        def __tensor_reader_impl__():
            for slots in paddle_reader():
                yield [slots[var.name] for var in self._feed_list]
Z
Zeng Jinle 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

        self.set_batch_generator(__tensor_reader_impl__, places)
        return self

    def set_batch_generator(self, reader, places=None):
        self._tensor_reader = reader
        if self._iterable:
            assert places is not None, "Places cannot be None when DataLoader is iterable"
            self._places = _convert_places(places)
        else:
            if places is not None:
                logging.info(
                    'places would be ommited when DataLoader is not iterable')
        return self


class PyReader(DataLoaderBase):
    """
    Create a reader object for data feeding in Python. 
    Data would be prefetched using Python thread and be pushed
    into a queue asynchronously. Data in the queue would be extracted 
    automatically when `Executor.run(...)` is called.

    Args:  
        feed_list (list(Variable)|tuple(Variable)): feed variable list.
            The variables should be created by :code:`fluid.layers.data()`.
        capacity (int): capacity of the queue maintained in PyReader.
            The unit is batch number. Set larger capacity if your reader 
            is fast. 
        use_double_buffer (bool): whether to use double_buffer_reader. 
            If use_double_buffer=True, PyReader would prefetch next 
            batch data asynchronously, so it would speed up data feeding 
            and occupies a little more CPU or GPU memory, i.e., the memory
            of one batch input data. 
        iterable (bool): whether the created PyReader is iterable. 
        return_list (bool): whether the return value on each device is 
            presented as a list. It is only valid when iterable=True. 
            If return_list=False, the return value on each device would 
            be a dict of str -> LoDTensor, where the key of the dict is 
            the name of each feeded variables. If return_list=True, the 
            return value on each device would be a list(LoDTensor). It is
            recommended to use return_list=False in static graph mode and
            use return_list=True in dygraph mode. 

    Returns:
G
guofei 已提交
922 923 924 925
        the created reader object.

    Return type:
        reader(Reader)
Z
Zeng Jinle 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944

    Examples:
        1. If iterable = False, the created PyReader object is almost the
           same as :code:`fluid.layers.py_reader()`. Operators would be 
           inserted into the program. User should call :code:`start()` 
           before each epoch and catch :code:`fluid.core.EOFException`
           thrown by :code:`Executor.run()` when epoch ends. Once the 
           exception is caught, user should call :code:`reset()` to reset 
           the reader manually.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 3
G
guofei 已提交
945 946 947 948 949
           
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)
Z
Zeng Jinle 已提交
950 951 952 953 954 955 956 957 958 959 960

           def reader_creator_random_image_and_label(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       fake_image = np.random.uniform(low=0,
                                                      high=255,
                                                      size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label
               return reader

G
guofei 已提交
961 962
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
Z
Zeng Jinle 已提交
963 964 965 966 967 968 969 970

           reader = fluid.io.PyReader(feed_list=[image, label],
                                      capacity=4,
                                      iterable=False)

           user_defined_reader = reader_creator_random_image_and_label(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE))
G
guofei 已提交
971 972
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
Z
Zeng Jinle 已提交
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
           executor.run(fluid.default_startup_program())
           for i in range(EPOCH_NUM):
               reader.start()
               while True:
                   try:
                       executor.run(feed=None)
                   except fluid.core.EOFException:
                       reader.reset()
                       break

 
        2. If iterable=True, the created PyReader object is decoupled with
           the program. No operator would be inserted into the program. 
           In this case, the created reader is a Python generator, which 
           is iterable. User should feed the data yielded from PyReader 
           object into :code:`Executor.run(feed=...)`.  

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           EPOCH_NUM = 3
           ITER_NUM = 5
           BATCH_SIZE = 10

G
guofei 已提交
1000 1001 1002 1003 1004
           def network(image, label):
               # User-defined network, here is an example of softmax regression.
               predict = fluid.layers.fc(input=image, size=10, act='softmax')           
               return fluid.layers.cross_entropy(input=predict, label=label)

Z
Zeng Jinle 已提交
1005 1006 1007
           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
G
guofei 已提交
1008 1009 1010
                       fake_image = np.random.uniform(low=0, high=255, size=[height, width])
                       fake_label = np.ones([1])
                       yield fake_image, fake_label 
Z
Zeng Jinle 已提交
1011 1012
               return reader

G
guofei 已提交
1013 1014 1015
           image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
           label = fluid.data(name='label', shape=[None, 1], dtype='int64')
           reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True, return_list=False)
Z
Zeng Jinle 已提交
1016 1017 1018 1019

           user_defined_reader = reader_creator_random_image(784, 784)
           reader.decorate_sample_list_generator(
               paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
G
guofei 已提交
1020 1021 1022 1023 1024 1025
                   fluid.core.CPUPlace())
           
           loss = network(image, label)
           executor = fluid.Executor(fluid.CPUPlace())
           executor.run(fluid.default_startup_program())
           
Z
Zeng Jinle 已提交
1026 1027
           for _ in range(EPOCH_NUM):
               for data in reader():
G
guofei 已提交
1028
                   executor.run(feed=data, fetch_list=[loss])
Z
Zeng Jinle 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082


        3. If return_list=True, the return values would be presented as list instead of dict. 
           This is usually used in dygraph mode.

        .. code-block:: python

           import paddle
           import paddle.fluid as fluid
           import numpy as np

           ITER_NUM = 5
           BATCH_SIZE = 10

           def reader_creator_random_image(height, width):
               def reader():
                   for i in range(ITER_NUM):
                       yield np.random.uniform(low=0, high=255, size=[height, width]), \
                           np.random.random_integers(low=0, high=9, size=[1])
               return reader

           place = fluid.CPUPlace()
           with fluid.dygraph.guard(place):
               py_reader = fluid.io.PyReader(capacity=2, return_list=True)
               user_defined_reader = reader_creator_random_image(784, 784)
               py_reader.decorate_sample_list_generator(
                   paddle.batch(user_defined_reader, batch_size=BATCH_SIZE),
                   place)
               for image, label in py_reader():
                   relu = fluid.layers.relu(image)
    """

    def __init__(self,
                 feed_list=None,
                 capacity=None,
                 use_double_buffer=True,
                 iterable=True,
                 return_list=False):
        self._loader = DataLoader.from_generator(
            feed_list, capacity, use_double_buffer, iterable, return_list)

    @property
    def queue(self):
        return self._loader.queue

    @property
    def iterable(self):
        return self._loader.iterable

    def __iter__(self):
        return self._loader.__iter__()

    def __next__(self):
        return self._loader.__next__()
S
sneaxiy 已提交
1083 1084

    def start(self):
S
add doc  
sneaxiy 已提交
1085 1086 1087
        '''
        Start the data feeding thread. 
        Can only call when the reader object is not iterable.  
1088
        
G
guofei 已提交
1089 1090
	Example:
	    .. code-block:: python
Z
Zeng Jinle 已提交
1091
    
H
Huihuang Zheng 已提交
1092 1093 1094 1095
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1096 1097 1098 1099 1100 1101
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1102
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1103 1104 1105 1106
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1107
                executor = fluid.Executor(fluid.CPUPlace())
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break

Z
Zeng Jinle 已提交
1118 1119
	    '''
        self._loader.start()
S
sneaxiy 已提交
1120

S
sneaxiy 已提交
1121
    def reset(self):
S
add doc  
sneaxiy 已提交
1122 1123 1124
        '''
        Reset the reader object when :code:`fluid.core.EOFException` raises. 
        Can only call when the reader object is not iterable.
1125 1126 1127 1128
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1129 1130 1131 1132
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1133 1134 1135 1136 1137 1138
                BATCH_SIZE = 10

                def generator():
                    for i in range(5):
                        yield np.random.uniform(low=0, high=255, size=[784, 784]),

G
guofei 已提交
1139
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
1140 1141 1142 1143
                reader = fluid.io.PyReader(feed_list=[image], capacity=4, iterable=False)
                reader.decorate_sample_list_generator(
                    paddle.batch(generator, batch_size=BATCH_SIZE))

G
guofei 已提交
1144
                executor = fluid.Executor(fluid.CPUPlace())
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
                executor.run(fluid.default_startup_program())
                for i in range(3):
                    reader.start()
                    while True:
                        try:
                            executor.run(feed=None)
                        except fluid.core.EOFException:
                            reader.reset()
                            break        

S
add doc  
sneaxiy 已提交
1155
        '''
Z
Zeng Jinle 已提交
1156
        self._loader.reset()
S
sneaxiy 已提交
1157

S
sneaxiy 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166
    def decorate_sample_generator(self,
                                  sample_generator,
                                  batch_size,
                                  drop_last=True,
                                  places=None):
        '''
        Set the data source of the PyReader object.
        
        The provided :code:`sample_generator` should be a Python generator,
1167
        which yields list(numpy.ndarray)-typed data of each sample.
S
sneaxiy 已提交
1168 1169 1170 1171

        :code:`places` must be set when the PyReader object is iterable.

        If all inputs have no lods, this method is faster than 
S
sneaxiy 已提交
1172
        :code:`decorate_sample_list_generator(paddle.batch(sample_generator, ...))` .
S
sneaxiy 已提交
1173 1174 1175

        Args:
            sample_generator (generator): Python generator that yields
1176
                list(numpy.ndarray)-typed sample data.
S
sneaxiy 已提交
1177 1178 1179 1180 1181
            batch_size (int): batch size. Must be larger than 0.
            drop_last (bool): Whether to drop the last batch when sample number
                is less than batch_size. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1182 1183 1184 1185

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1186 1187 1188
                import paddle.fluid as fluid
                import numpy as np

1189 1190 1191
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1192 1193 1194 1195 1196
        
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.array([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1208 1209
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1210 1211 1212 1213 1214
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_generator(user_defined_generator,
                                                 batch_size=BATCH_SIZE,
G
guofei 已提交
1215 1216 1217 1218
                                                 places=[fluid.CPUPlace()])
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1219 1220 1221

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1222
                        executor.run(feed=data, fetch_list=[loss])
1223
    
S
sneaxiy 已提交
1224
        '''
Z
Zeng Jinle 已提交
1225 1226
        self._loader.set_sample_generator(sample_generator, batch_size,
                                          drop_last, places)
S
sneaxiy 已提交
1227

S
sneaxiy 已提交
1228
    def decorate_sample_list_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1229 1230 1231 1232
        '''
        Set the data source of the PyReader object. 

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1233
        which yields list(numpy.ndarray) typed batched data. 
S
add doc  
sneaxiy 已提交
1234 1235 1236 1237
        
        :code:`places` must be set when the PyReader object is iterable.

        Args:
S
sneaxiy 已提交
1238 1239 1240 1241
            reader (generator): Python generator that yields 
                list(numpy.ndarray)-typed batched data. 
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
                be provided when PyReader is iterable.
1242 1243 1244 1245
        
        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1246 1247 1248 1249
                import paddle
                import paddle.fluid as fluid
                import numpy as np

1250 1251 1252 1253
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3

G
guofei 已提交
1254 1255 1256 1257 1258
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            fake_image = np.random.uniform(low=0,
                                                           high=255,
                                                           size=[height, width])
                            fake_label = np.ones([1])
                            yield fake_image, fake_label
                    return generator

G
guofei 已提交
1269 1270
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1271 1272 1273 1274 1275
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
                reader.decorate_sample_list_generator(
                    paddle.batch(user_defined_generator, batch_size=BATCH_SIZE),
G
guofei 已提交
1276 1277 1278 1279 1280
                    fluid.core.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.core.CPUPlace())
                executor.run(fluid.default_startup_program())
1281 1282 1283

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1284
                        executor.run(feed=data, fetch_list=[loss])
1285
                 
S
add doc  
sneaxiy 已提交
1286
        '''
Z
Zeng Jinle 已提交
1287
        self._loader.set_sample_list_generator(reader, places)
S
sneaxiy 已提交
1288

S
sneaxiy 已提交
1289
    def decorate_batch_generator(self, reader, places=None):
S
add doc  
sneaxiy 已提交
1290 1291 1292 1293
        '''
        Set the data source of the PyReader object.

        The provided :code:`reader` should be a Python generator,
S
sneaxiy 已提交
1294
        which yields numpy.ndarray-typed or LoDTensor-typed batched data.
S
add doc  
sneaxiy 已提交
1295 1296 1297 1298 1299 1300

        :code:`places` must be set when the PyReader object is iterable.

        Args:
            reader (generator): Python generator that yields LoDTensor-typed
                batched data.
S
sneaxiy 已提交
1301
            places (None|list(CUDAPlace)|list(CPUPlace)): place list. Must
S
sneaxiy 已提交
1302
                be provided when PyReader is iterable.
1303 1304 1305 1306

        Example:
            .. code-block:: python

H
Huihuang Zheng 已提交
1307 1308 1309
                import paddle.fluid as fluid
                import numpy as np

1310 1311 1312
                EPOCH_NUM = 3
                ITER_NUM = 15
                BATCH_SIZE = 3
G
guofei 已提交
1313 1314 1315 1316 1317
               
                def network(image, label):
                    # User-defined network, here is an example of softmax regression.
                    predict = fluid.layers.fc(input=image, size=10, act='softmax')           
                    return fluid.layers.cross_entropy(input=predict, label=label)
1318 1319 1320 1321 1322 1323 1324 1325

                def random_image_and_label_generator(height, width):
                    def generator():
                        for i in range(ITER_NUM):
                            batch_image = np.random.uniform(low=0,
                                                            high=255,
                                                            size=[BATCH_SIZE, height, width])
                            batch_label = np.ones([BATCH_SIZE, 1])
G
guofei 已提交
1326 1327
                            batch_image = batch_image.astype('float32')
                            batch_label = batch_label.astype('int64')
1328 1329 1330
                            yield batch_image, batch_label
                    return generator

G
guofei 已提交
1331 1332
                image = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1333 1334 1335
                reader = fluid.io.PyReader(feed_list=[image, label], capacity=4, iterable=True)

                user_defined_generator = random_image_and_label_generator(784, 784)
G
guofei 已提交
1336 1337 1338 1339 1340
                reader.decorate_batch_generator(user_defined_generator, fluid.CPUPlace())
                
                loss = network(image, label)
                executor = fluid.Executor(fluid.CPUPlace())
                executor.run(fluid.default_startup_program())
1341 1342 1343

                for _ in range(EPOCH_NUM):
                    for data in reader():
G
guofei 已提交
1344
                        executor.run(feed=data, fetch_list=[loss])
1345

S
add doc  
sneaxiy 已提交
1346
        '''
Z
Zeng Jinle 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
        self._loader.set_batch_generator(reader, places)


class DatasetLoader(DataLoaderBase):
    def __init__(self, dataset, places, drop_last):
        assert isinstance(dataset,
                          DatasetBase), "dataset must be type of DatasetBase"
        assert not in_dygraph_mode(
        ), "DatasetLoader is not supported in dygraph mode yet"

        thread_num = len(places)

        assert len(dataset.filelist) >= thread_num, \
            "Filelist number of dataset {} must be not less than place number {}".format(len(dataset.filelist), thread_num)

        if dataset.thread_num != 0 and dataset.thread_num != thread_num:
            logging.warn('thread_num {} which is set in Dataset is ignored'.
                         format(dataset.thread_num))

        dataset.set_thread(thread_num)

        if isinstance(dataset,
                      InMemoryDataset) and dataset.queue_num > thread_num:
            logging.warn("queue_num {} which is set in Dataset is ignored".
                         format(dataset.queue_num))
            dataset.set_queue_num(thread_num)

        self._dataset = dataset
        use_slots = [
            slot.name for slot in dataset.proto_desc.multi_slot_desc.slots
            if slot.is_used
        ]

        self._iterable_dataset = core.IterableDatasetWrapper(
            dataset.dataset, use_slots,
            _convert_places(places), dataset.proto_desc.batch_size, drop_last)

    def __iter__(self):
        self._dataset._finish_to_run()
        self._dataset._prepare_to_run()
        self._iterable_dataset._start()
        return self

    def __next__(self):
        return self._iterable_dataset._next()