backward.cc 19.9 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/framework/backward.h"
Y
Yu Yang 已提交
16
#include "paddle/operators/net_op.h"
D
dongzhihong 已提交
17

F
fengjiayi 已提交
18
#include <deque>
D
dongzhihong 已提交
19
#include <list>
Y
Yu Yang 已提交
20
#include <memory>
Y
Yu Yang 已提交
21
#include <unordered_set>
Y
Yu Yang 已提交
22

F
fengjiayi 已提交
23
#include "paddle/framework/block_desc.h"
24
#include "paddle/framework/op_registry.h"
25
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
26
#include "paddle/operators/net_op.h"
Y
Yu Yang 已提交
27 28 29 30

namespace paddle {
namespace framework {

Y
Yu Yang 已提交
31
static inline std::unique_ptr<OperatorBase> CreateGradOp(
32 33
    const OperatorBase& op, const std::unordered_set<std::string>& no_grad_set,
    std::unordered_map<std::string, std::string>* grad_to_var) {
Y
Yu Yang 已提交
34 35 36 37 38 39
  OpDescBind op_desc;
  op_desc.SetInputMap(op.Inputs());
  op_desc.SetOutputMap(op.Outputs());
  op_desc.SetType(op.Type());
  op_desc.SetAttrMap(op.Attrs());
  auto& info = OpInfoMap::Instance().Get(op.Type());
Y
Yu Yang 已提交
40
  auto grad_descs = info.GradOpMaker()(op_desc, no_grad_set, grad_to_var, {});
Y
Yu Yang 已提交
41 42
  std::vector<std::unique_ptr<OperatorBase>> grad_ops;
  grad_ops.reserve(grad_descs.size());
Y
Yu Yang 已提交
43 44 45
  std::transform(grad_descs.begin(), grad_descs.end(),
                 std::back_inserter(grad_ops),
                 [](const std::unique_ptr<OpDescBind>& grad_desc) {
Y
Yu Yang 已提交
46
                   return OpRegistry::CreateOp(*grad_desc);
Y
Yu Yang 已提交
47
                 });
Y
Yu Yang 已提交
48
  PADDLE_ENFORCE(!grad_ops.empty());
Y
Yu Yang 已提交
49 50 51 52 53 54 55
  if (grad_ops.size() == 1) {
    return std::move(grad_ops[0]);
  } else {
    auto net_op = new operators::NetOp();
    for (auto& grad_op : grad_ops) {
      net_op->AppendOp(std::move(grad_op));
    }
Y
Yu Yang 已提交
56
    net_op->CompleteAddOp();
Y
Yu Yang 已提交
57 58 59 60
    return std::unique_ptr<OperatorBase>(net_op);
  }
}

Y
Yu Yang 已提交
61
template <typename Map, typename T>
Q
qiaolongfei 已提交
62
static void ForEachVarName(const Map& names, T callback) {
Y
Yu Yang 已提交
63
  for (auto& name : names) {
Y
Yu Yang 已提交
64
    for (auto& n : name.second) {
65
      if (callback(n)) return;
Y
Yu Yang 已提交
66 67
    }
  }
Y
Yu Yang 已提交
68 69
}

Y
Yan Chunwei 已提交
70
// return whether all the names + suffixes in the set
Y
Yu Yang 已提交
71
static bool AllInSet(
Y
Yu Yang 已提交
72
    const std::map<std::string, std::vector<std::string>>& names,
Y
Yu Yang 已提交
73
    const std::string& suffix, const std::unordered_set<std::string>& set) {
74 75 76 77
  bool all_in_set = true;
  ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
    all_in_set = set.find(n + suffix) != set.end();
    return !all_in_set;
Y
Yu Yang 已提交
78
  });
79
  return all_in_set;
Y
Yu Yang 已提交
80 81
}

Y
Yu Yang 已提交
82 83
static std::unique_ptr<OperatorBase> NOP() {
  auto net_op = new operators::NetOp();
Q
qiaolongfei 已提交
84
  net_op->SetType("@NOP@");
Y
Yu Yang 已提交
85
  net_op->CompleteAddOp();
Y
Yu Yang 已提交
86
  return std::unique_ptr<OperatorBase>(net_op);
Y
Yu Yang 已提交
87 88
}

Y
Yan Chunwei 已提交
89
//  Get backward operator from a forward operator, a recursive implementation.
Y
Yu Yang 已提交
90 91 92
//
//  no_grad_names the gradient variable names without gradient calculating.
//
93 94 95
//  uniq_id is a unique index used inside recursively calling
//  BackwardRecursive. use `uid = uniq_id++;` to get the unique index, and
//  pass `uniq_id` through recursive calling.
Y
Yu Yang 已提交
96
//
Y
Yan Chunwei 已提交
97 98
//  returns The backward operator. In a simple situation, it may be a simple
//  operator, in a complex situation, it maybe a NetOp.
Y
Yu Yang 已提交
99 100
//
//  See Backward.h for details
Y
Yu Yang 已提交
101
static std::unique_ptr<OperatorBase> BackwardRecursive(
Y
Yu Yang 已提交
102
    const OperatorBase& forwardOp,
103 104 105
    std::unordered_set<std::string>& no_grad_names,
    std::unordered_map<std::string, std::string>* grad_to_var,
    size_t& uniq_id) {
Y
Yu Yang 已提交
106 107
  //  If all input gradients of forwarding operator do not need to calculate,
  //  just return an NOP. Not return null ptr because NOP does not take
Q
typo  
qiaolongfei 已提交
108
  //  too much time for calculation, but it is useful for simplifying logic.
109
  if (AllInSet(forwardOp.Inputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
110
               no_grad_names /*set*/)) {
Y
Yu Yang 已提交
111
    return NOP();
Y
Yu Yang 已提交
112 113
  }

114 115
  //  All output gradients of forwarding operator do not need to calculate.
  //  Then all input gradients cannot be computed at all, and we put them into
Y
Yu Yang 已提交
116
  //  `no_grad_names` set. Return an NOP.
Q
qiaolongfei 已提交
117
  if (AllInSet(forwardOp.Outputs() /*names*/, kGradVarSuffix /*suffix*/,
Y
Yan Chunwei 已提交
118
               no_grad_names /*set*/)) {
Q
qiaolongfei 已提交
119
    ForEachVarName(forwardOp.Inputs(),
Y
Yu Yang 已提交
120 121 122 123
                   [&no_grad_names](const std::string& name) -> bool {
                     no_grad_names.insert(GradVarName(name));
                     return false;
                   });
Y
Yu Yang 已提交
124
    return NOP();
Y
Yu Yang 已提交
125 126
  }

Y
Yu Yang 已提交
127
  // Returned gradient network
Y
Yu Yang 已提交
128
  auto net = std::unique_ptr<operators::NetOp>(new operators::NetOp());
Y
Yu Yang 已提交
129 130

  if (forwardOp.IsNetOp()) {
Y
Yu Yang 已提交
131
    // Because forwardOp is a net op, it can static_cast.
Y
Yan Chunwei 已提交
132
    auto& forwardNet = static_cast<const operators::NetOp&>(forwardOp);
Y
Yu Yang 已提交
133

134
    // Map from output gradient variable name to operator's indices in
Y
Yan Chunwei 已提交
135
    // backward net's ops_. That operator generates that variable.
Y
Yu Yang 已提交
136 137 138
    std::unordered_map<std::string, std::vector<size_t>> dup_output_ops;

    size_t local_op_id = 0;
Y
Yan Chunwei 已提交
139
    // reversely travel forwardNet and collect all duplicate outputs.
Y
Yu Yang 已提交
140
    for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend();
Y
Yu Yang 已提交
141
         ++it, ++local_op_id) {
Y
Yu Yang 已提交
142
      auto& fwd = *it;
143
      auto bwd = BackwardRecursive(*fwd, no_grad_names, grad_to_var, uniq_id);
Q
qiaolongfei 已提交
144
      ForEachVarName(bwd->Outputs(),
Y
Yu Yang 已提交
145 146 147 148
                     [&dup_output_ops, local_op_id](const std::string& out) {
                       dup_output_ops[out].emplace_back(local_op_id);
                       return false;
                     });
Y
Yu Yang 已提交
149
      net->AppendOp(std::move(bwd));
D
dongzhihong 已提交
150
    }
Y
Yu Yang 已提交
151
    // Get unique ID for this method.
D
dongzhihong 已提交
152
    auto uid = uniq_id++;
D
dongzhihong 已提交
153
    // TODO(dzh): more comment
Y
Yan Chunwei 已提交
154 155 156 157 158
    // multiple operators which have the same output (y for example) may
    // overwrite the same y variable when backward, special operations are token
    // to handle this case. For each duplicate output, rename it to an alias
    // (original name with a offset), append an `add` op for its operator,
    // and finally sum all the alias variable to the final output variable y.
Y
Yu Yang 已提交
159
    using Pos = std::pair<size_t, std::unique_ptr<OperatorBase>>;
Y
Yu Yang 已提交
160
    std::list<Pos> insert_position;
D
dongzhihong 已提交
161
    for (auto& dup_output_op : dup_output_ops) {
D
dongzhihong 已提交
162
      const std::string& name = dup_output_op.first;
Q
qijun 已提交
163 164 165
      // duplicate @Empty@ don't need to be added
      if (name == kEmptyVarName) continue;

D
dongzhihong 已提交
166
      auto& dup_op = dup_output_op.second;
Y
Yan Chunwei 已提交
167
      // no duplicate output
D
dongzhihong 已提交
168 169
      if (dup_op.size() == 1) continue;

Y
Yan Chunwei 已提交
170 171
      // process the duplicate outputs
      std::vector<std::string> dup_outputs;
D
dongzhihong 已提交
172
      for (size_t i = 0; i < dup_op.size(); ++i) {
Y
Yan Chunwei 已提交
173
        // rename each duplicate output to an alias
D
dongzhihong 已提交
174
        auto op_offset = dup_op[i];
D
dongzhihong 已提交
175 176 177
        dup_outputs.push_back(name + "@RENAME@" + std::to_string(uid) + "@" +
                              std::to_string(i));
        net->ops_[op_offset]->Rename(name, dup_outputs.back());
D
dongzhihong 已提交
178
      }
179 180 181 182 183
      // collect all the offset for each alias,
      // insert a sum operator to add all aliases to output
      insert_position.push_back(
          {dup_op.back(), OpRegistry::CreateOp("sum", {{"X", dup_outputs}},
                                               {{"Out", {name}}}, {})});
D
dongzhihong 已提交
184
    }
Y
Yu Yang 已提交
185

186
    // make sure the inserted `sum` ops follow the BFS order.
Y
Yu Yang 已提交
187
    insert_position.sort(
D
dongzhihong 已提交
188
        [](const Pos& l, const Pos& r) { return l.first > r.first; });
Y
Yu Yang 已提交
189 190

    for (auto& pos : insert_position) {
Y
Yu Yang 已提交
191
      net->InsertOp(pos.first + 1, std::move(pos.second));
D
dongzhihong 已提交
192
    }
Y
Yu Yang 已提交
193
  } else {
194
    std::unique_ptr<OperatorBase> grad_op(
195
        CreateGradOp(forwardOp, no_grad_names, grad_to_var));
Y
Yu Yang 已提交
196

Y
Yu Yang 已提交
197 198
    ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op](
                                          const std::string& grad_input) {
199
      if (no_grad_names.count(grad_input)) {
Y
Yu Yang 已提交
200
        // +1 for \0
201
        std::string prefix = grad_input.substr(
Y
Yu Yang 已提交
202
            0, grad_input.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
Q
qiaolongfei 已提交
203
        grad_op->Rename(grad_input, prefix + kZeroVarSuffix);
Y
Yu Yang 已提交
204 205 206

        // If part of input gradient of that operator is not calculated, fill
        // zero variables to that input gradient.
D
dangqingqing 已提交
207 208
        net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}},
                                           {{"Y", {grad_input}}}, {}));
209
      }
Y
Yu Yang 已提交
210 211 212
      return false;
    });

Q
qiaolongfei 已提交
213 214
    ForEachVarName(grad_op->Outputs(),
                   [&no_grad_names, &grad_op](const std::string& grad_output) {
Y
Yu Yang 已提交
215
                     if (no_grad_names.count(grad_output)) {
Q
qiaolongfei 已提交
216
                       grad_op->Rename(grad_output, kEmptyVarName);
Y
Yu Yang 已提交
217 218 219
                     }
                     return false;
                   });
Y
Yu Yang 已提交
220

Y
Yan Chunwei 已提交
221
    // process recurrent gradient op as a special operator.
Y
Yu Yang 已提交
222
    if (forwardOp.Type() == "dynamic_recurrent") {
223 224 225 226 227 228 229 230 231 232 233
      // NOTE clean up cycle call somewhere (RNN's stepnet constains itself),
      // or this will result in infinite loop.
      const auto& rnnop =
          *static_cast<const operators::DynamicRecurrentOp*>(&forwardOp);
      auto rnn_grad_op =
          static_cast<operators::DynamicRecurrentGradientOp*>(grad_op.get());
      const auto& stepnet_op =
          *static_cast<const OperatorBase*>(&rnnop.rnn.GetStepUnit());
      // create stepnet's gradient op
      rnn_grad_op->rnn.SetStepUnit(
          BackwardRecursive(stepnet_op, no_grad_names, grad_to_var, uniq_id));
Y
Yan Chunwei 已提交
234 235
    }

Y
Yu Yang 已提交
236 237 238
    if (net->ops_.empty()) {  // Current no aux op is added to network
      return grad_op;
    }
Y
Yu Yang 已提交
239
    net->AppendOp(std::move(grad_op));
Y
Yu Yang 已提交
240
  }
Q
qiaolongfei 已提交
241
  net->SetType("@GENERATED_BACKWARD@");
Y
Yu Yang 已提交
242
  net->CompleteAddOp();
Y
Yu Yang 已提交
243 244 245
  return std::unique_ptr<OperatorBase>(
      static_cast<OperatorBase*>(net.release()));
}
Y
Yu Yang 已提交
246

Y
Yu Yang 已提交
247
// See header for comments
Y
Yu Yang 已提交
248
std::unique_ptr<OperatorBase> Backward(
Y
Yu Yang 已提交
249
    const OperatorBase& forwardOp,
Y
Yu Yang 已提交
250 251
    const std::unordered_set<std::string>& no_grad_vars) {
  std::unordered_set<std::string> no_grad_names;
Q
qijun 已提交
252
  no_grad_names.reserve(no_grad_vars.size() + 1);
Y
Yu Yang 已提交
253

254
  no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
255

Y
Yu Yang 已提交
256
  for (auto& name : no_grad_vars) {
257
    no_grad_names.insert(name + kGradVarSuffix);
Y
Yu Yang 已提交
258
  }
Y
Yu Yang 已提交
259
  size_t uid = 0;
260 261
  std::unordered_map<std::string, std::string> grad_to_var;
  return BackwardRecursive(forwardOp, no_grad_names, &grad_to_var, uid);
Y
Yu Yang 已提交
262
}
Y
Yi Wang 已提交
263

F
fengjiayi 已提交
264 265 266 267 268 269 270 271 272 273 274 275
// ====================================  //

static bool AllGradInSet(const std::vector<std::string>& names,
                         const std::unordered_set<std::string>& set) {
  for (const std::string& name : names) {
    if (!set.count(GradVarName(name))) {
      return false;
    }
  }
  return true;
}

Y
Yu Yang 已提交
276 277 278 279 280 281 282 283 284
static std::string FwdName(const std::string& grad_name) {
  auto pos = grad_name.find("@GRAD");
  if (pos == std::string::npos) {
    return "";
  } else {
    return grad_name.substr(0, pos);
  }
}

Y
Yu Yang 已提交
285
static void CreateGradVarInBlock(
286 287 288 289
    size_t grad_op_start_index,
    const std::unordered_map<std::string, std::string>& param_name_map,
    BlockDescBind* block_desc,
    std::unordered_map<std::string, GradVarInfo>* grad_var_record) {
290 291 292
  auto ops = block_desc->AllOps();
  for (size_t op_index = grad_op_start_index; op_index < ops.size();
       ++op_index) {
Q
Qiao Longfei 已提交
293
    bool need_infer_shape = false;
Y
Yu Yang 已提交
294
    std::unordered_set<std::string> new_vars;
Y
Yu Yang 已提交
295 296 297 298 299
    ForEachVarName(ops[op_index]->Outputs(),
                   [&](const std::string& grad_var_name) {
                     if (block_desc->HasVar(grad_var_name)) {
                       return false;
                     }
Q
Qiao Longfei 已提交
300 301
                     need_infer_shape = true;
                     auto var = block_desc->Var(grad_var_name);
Y
Yu Yang 已提交
302
                     new_vars.insert(var->Name());
Y
Yu Yang 已提交
303 304 305 306 307 308 309 310 311 312 313
                     auto it = param_name_map.find(grad_var_name);
                     if (it == param_name_map.end()) {
                       return false;
                     }
                     auto param_var_name = it->second;
                     auto& grad_record = (*grad_var_record)[param_var_name];
                     grad_record.name_ = grad_var_name;
                     grad_record.block_idx_ = block_desc->ID();
                     grad_record.op_idx_ = static_cast<int>(op_index);
                     return false; /* not break */
                   });
Q
Qiao Longfei 已提交
314
    if (need_infer_shape) {
Q
QI JUN 已提交
315
      ops[op_index]->InferVarType(block_desc);
Y
Yu Yang 已提交
316 317 318 319 320
      for (auto& arg : ops[op_index]->OutputArgumentNames()) {
        if (new_vars.find(arg) == new_vars.end()) {
          continue;
        }
        auto pname = FwdName(arg);
Y
Yu Yang 已提交
321
        auto* param = block_desc->FindVarRecursive(pname);
Y
Yu Yang 已提交
322 323 324 325 326 327 328 329 330
        auto* grad = block_desc->FindVar(arg);
        if (param == nullptr) {
          LOG(WARNING) << "Cannot find forward variable of " << arg
                       << ". Set its gradient to FP32";
          grad->SetDataType(DataType::FP32);
        } else {
          grad->SetDataType(param->GetDataType());
        }
      }
Q
Qiao Longfei 已提交
331 332
      ops[op_index]->InferShape(*block_desc);
    }
333 334 335
  }
}

F
fengjiayi 已提交
336
std::vector<std::unique_ptr<OpDescBind>> MakeOpGrad(
337
    const OpDescBind* op_desc, std::unordered_set<std::string>* no_grad_vars,
Y
Yu Yang 已提交
338 339 340
    std::unordered_map<std::string, std::string>* grad_to_var,
    const std::vector<BlockDescBind*>& grad_block =
        std::vector<BlockDescBind*>()) {
F
Update  
fengjiayi 已提交
341
  std::vector<std::unique_ptr<OpDescBind>> grad_op_descs;
342
  // All input gradients of forwarding operator do not need to calculate.
F
fengjiayi 已提交
343
  const std::vector<std::string>& inputs = op_desc->InputArgumentNames();
344
  if (AllGradInSet(inputs, *no_grad_vars)) {
F
fengjiayi 已提交
345 346 347
    return grad_op_descs;  // empty vector
  }
  // All output gradients of forwarding operator do not need to calculate.
F
fengjiayi 已提交
348
  const std::vector<std::string>& outputs = op_desc->OutputArgumentNames();
349
  if (AllGradInSet(outputs, *no_grad_vars)) {
350
    for (const std::string& name : inputs) {
351
      no_grad_vars->insert(GradVarName(name));
F
fengjiayi 已提交
352 353 354 355
    }
    return grad_op_descs;  // empty vector
  }

Y
Yu Yang 已提交
356 357 358 359
  grad_op_descs =
      OpInfoMap::Instance()
          .Get(op_desc->Type())
          .GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var, grad_block);
F
fengjiayi 已提交
360

F
Update  
fengjiayi 已提交
361 362 363
  std::list<std::unique_ptr<OpDescBind>> pending_fill_zeros_ops;
  for (auto& desc : grad_op_descs) {
    for (const std::string& in_name : desc->InputArgumentNames()) {
364
      if (no_grad_vars->count(in_name)) {
F
fengjiayi 已提交
365 366 367
        std::string prefix = in_name.substr(
            0, in_name.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1);
        std::string new_name = prefix + kZeroVarSuffix;
F
Update  
fengjiayi 已提交
368
        desc->Rename(in_name, new_name);
F
fengjiayi 已提交
369 370 371
        std::unique_ptr<OpDescBind> fill_zeros_op(new OpDescBind(
            "fill_zeros_like", {{"X", {prefix}}}, {{"Y", {new_name}}}, {}));
        pending_fill_zeros_ops.push_back(std::move(fill_zeros_op));
F
fengjiayi 已提交
372 373 374
      }
    }
  }
F
fengjiayi 已提交
375

F
fengjiayi 已提交
376
  for (auto& p : pending_fill_zeros_ops) {
F
fengjiayi 已提交
377
    grad_op_descs.insert(grad_op_descs.begin(), std::move(p));
F
fengjiayi 已提交
378
  }
F
fengjiayi 已提交
379 380 381
  return grad_op_descs;
}

F
fengjiayi 已提交
382 383
std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
    ProgramDescBind& program_desc, int block_idx,
384 385
    std::unordered_set<std::string>* no_grad_vars,
    std::unordered_map<std::string, std::string>* grad_to_var) {
386
  BlockDescBind* cur_block = program_desc.MutableBlock(block_idx);
387
  std::vector<OpDescBind*> op_descs = cur_block->AllOps();
F
Update  
fengjiayi 已提交
388 389
  std::unordered_map<std::string, std::vector<size_t>> dup_out_ops;
  size_t grad_desc_idx = 0;
F
Update  
fengjiayi 已提交
390
  std::vector<std::unique_ptr<OpDescBind>> backward_descs;
391

F
fengjiayi 已提交
392
  for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) {
Y
Yu Yang 已提交
393
    std::vector<std::unique_ptr<OpDescBind>> op_grads;
F
fengjiayi 已提交
394 395

    if ((*it)->Type() == "recurrent") {
396
      int step_block_idx = (*it)->GetBlockAttr("step_block");
397 398
      auto backward_block_op_descs = MakeBlockBackward(
          program_desc, step_block_idx, no_grad_vars, grad_to_var);
Y
Yu Yang 已提交
399 400
      BlockDescBind* backward_block =
          program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx));
F
fengjiayi 已提交
401
      for (auto& ptr : backward_block_op_descs) {
402
        backward_block->AppendAllocatedOp(std::move(ptr));
F
fengjiayi 已提交
403
      }
Y
Yu Yang 已提交
404 405 406
      op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block});
    } else {
      op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var);
F
fengjiayi 已提交
407 408
    }

F
Update  
fengjiayi 已提交
409
    for (const auto& desc : op_grads) {
F
fengjiayi 已提交
410
      for (const std::string& out_name : desc->OutputArgumentNames()) {
F
Update  
fengjiayi 已提交
411 412 413 414
        dup_out_ops[out_name].emplace_back(grad_desc_idx);
      }
      ++grad_desc_idx;
    }
F
fengjiayi 已提交
415 416 417
    std::transform(
        op_grads.begin(), op_grads.end(), std::back_inserter(backward_descs),
        [](std::unique_ptr<OpDescBind>& ptr) { return std::move(ptr); });
F
Update  
fengjiayi 已提交
418 419
  }
  // Check whether some variables are written more than once
F
Update  
fengjiayi 已提交
420
  std::list<std::pair<size_t, std::unique_ptr<OpDescBind>>> pending_sum_ops;
F
Update  
fengjiayi 已提交
421 422 423 424 425 426 427
  for (const auto& dup : dup_out_ops) {
    const std::string& out_name = dup.first;
    const std::vector<size_t> dup_op = dup.second;
    if (out_name != kEmptyVarName && dup_op.size() > 1) {
      std::vector<std::string> sum_op_inputs;
      for (size_t i = 0; i < dup_op.size(); ++i) {
        std::string new_name = out_name + "@RENAME@" + std::to_string(i);
F
Update  
fengjiayi 已提交
428
        backward_descs[dup_op[i]]->Rename(out_name, new_name);
F
Update  
fengjiayi 已提交
429 430
        sum_op_inputs.emplace_back(new_name);
      }
F
fengjiayi 已提交
431 432 433
      std::unique_ptr<OpDescBind> sum_op(new OpDescBind(
          "sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}}, {}));
      pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)});
F
Update  
fengjiayi 已提交
434 435 436
    }
  }
  pending_sum_ops.sort(
F
Update  
fengjiayi 已提交
437 438 439 440
      [](const std::pair<size_t, std::unique_ptr<OpDescBind>>& a,
         const std::pair<size_t, std::unique_ptr<OpDescBind>>& b) {
        return a.first > b.first;
      });
F
Update  
fengjiayi 已提交
441
  for (auto& p : pending_sum_ops) {
F
Update  
fengjiayi 已提交
442 443
    backward_descs.insert(backward_descs.begin() + p.first + 1,
                          std::move(p.second));
F
Update  
fengjiayi 已提交
444
  }
445

F
fengjiayi 已提交
446 447 448
  return backward_descs;
}

Q
qiaolongfei 已提交
449 450 451
ParamGradInfoMap AppendBackward(
    ProgramDescBind& program_desc, const VarDescBind& target,
    const std::unordered_set<std::string>& no_grad_vars) {
F
fengjiayi 已提交
452 453 454 455 456 457
  std::unordered_set<std::string> no_grad_var_names;
  no_grad_var_names.reserve(no_grad_vars.size() + 1);
  no_grad_var_names.insert(std::string(kEmptyVarName) + kGradVarSuffix);
  for (auto& name : no_grad_vars) {
    no_grad_var_names.insert(GradVarName(name));
  }
458

F
fengjiayi 已提交
459
  const int root_block_idx = 0;
460
  auto root_block = program_desc.MutableBlock(root_block_idx);
461 462

  // insert fill one op for target
Q
Qiao Longfei 已提交
463
  // TODO(qiao) add some check to the target.
464
  std::string fill_one_op_out = GradVarName(target.Name());
Q
Qiao Longfei 已提交
465 466 467 468 469
  std::vector<int64_t> target_shape_desc = target.Shape();
  std::vector<int> target_shape;
  std::transform(target_shape_desc.begin(), target_shape_desc.end(),
                 std::back_inserter(target_shape),
                 [](int64_t dim) { return static_cast<int>(dim); });
Y
Yu Yang 已提交
470 471
  VLOG(3) << "backward from loss=" << target.Name()
          << " data_type=" << target.GetDataType();
472 473
  std::unique_ptr<OpDescBind> fill_one_op(
      new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}},
Q
Qiao Longfei 已提交
474
                     {{"shape", target_shape},
475
                      {"value", static_cast<float>(1.0)},
Y
Yu Yang 已提交
476
                      {"data_type", target.GetDataType()}}));
Q
QI JUN 已提交
477 478 479
  // infer var type of fill_one_op
  fill_one_op->InferVarType(root_block);

480 481
  root_block->AppendAllocatedOp(std::move(fill_one_op));
  size_t forward_op_num = root_block->OpSize();
482
  size_t forward_block_num = program_desc.Size();
Y
Yu Yang 已提交
483 484

  // Insert backward operators
485 486 487
  std::unordered_map<std::string, std::string> grad_to_var;
  auto backward_op_descs = MakeBlockBackward(program_desc, root_block_idx,
                                             &no_grad_var_names, &grad_to_var);
Y
Yu Yang 已提交
488

F
fengjiayi 已提交
489
  for (auto& ptr : backward_op_descs) {
490
    root_block->AppendAllocatedOp(std::move(ptr));
491
  }
Q
Qiao Longfei 已提交
492 493 494 495 496 497
  // Create Variable

  // Create target gradient variable
  std::unordered_map<std::string, GradVarInfo> retv;

  auto var = root_block->Var(fill_one_op_out);
Y
Yu Yang 已提交
498
  var->SetDataType(target.GetDataType());
Q
Qiao Longfei 已提交
499 500 501 502 503
  var->SetShape(target.Shape());
  auto& target_grad = retv[target.Name()];
  target_grad.name_ = fill_one_op_out;
  target_grad.block_idx_ = root_block_idx;
  target_grad.op_idx_ = static_cast<int>(forward_op_num);
504 505

  // create grad_var for all blocks in this program
506
  CreateGradVarInBlock(forward_op_num, grad_to_var, root_block, &retv);
507 508
  for (size_t block_index = forward_block_num;
       block_index < program_desc.Size(); ++block_index) {
509
    CreateGradVarInBlock(0, grad_to_var, program_desc.MutableBlock(block_index),
510
                         &retv);
F
fengjiayi 已提交
511
  }
Y
Yu Yang 已提交
512
  return retv;
F
Update  
fengjiayi 已提交
513 514
}

Y
Yu Yang 已提交
515 516
}  // namespace framework
}  // namespace paddle