test_optimizer.py 20.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17 18 19
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
from paddle.fluid.backward import append_backward
Q
Qiao Longfei 已提交
20 21 22 23


class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
Q
qiaolongfei 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr)
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out")
            block.append_op(
                type="mul",
                inputs={"X": mul_x,
                        "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1})
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
Y
Yancey1989 已提交
53 54 55
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "sgd"])
Q
Qiao Longfei 已提交
56

Q
qiaolongfei 已提交
57 58 59 60
        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])

Q
Qiao Longfei 已提交
61

62 63 64 65 66 67 68 69
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

70
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
71
        init_program = framework.Program()
72 73 74
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
75 76 77 78 79
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
80 81 82 83 84 85 86 87 88 89
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
90 91 92
        learning_rate = 0.01
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2)
93 94 95 96
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
F
fengjiayi 已提交
97
        params_grads = append_backward(mean_out)
98 99
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
100 101
        opts = momentum_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
102 103 104 105
        self.assertEqual(len(opts), 3)
        sgd_op = opts[-1]
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "momentum"])
106
        self.assertFalse(sgd_op.attr('use_nesterov'))
107 108 109 110 111 112 113 114 115

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
116 117 118 119 120 121 122 123
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

124
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
125
        init_program = framework.Program()
126 127 128
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
129 130 131 132 133
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
134 135 136 137 138 139 140 141 142 143
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
144 145 146 147
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
148
        learning_rate = 0.01
149
        momentum_optimizer = self.MockMomentum(
Q
Qiao Longfei 已提交
150
            learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
F
fengjiayi 已提交
151
        params_grads = append_backward(mean_out)
152 153
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
154 155
        opts = momentum_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
156 157 158 159
        self.assertEqual(len(opts), 3)
        sgd_op = opts[-1]
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "momentum"])
160
        self.assertTrue(sgd_op.attr('use_nesterov'))
161 162 163 164 165 166 167 168 169

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
170 171 172 173 174 175 176 177
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

178

179 180 181 182 183 184 185 186 187
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
188
        init_program = framework.Program()
189 190 191
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
192 193 194 195 196
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
197 198 199 200 201 202 203 204 205 206
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
207 208 209 210
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
211 212 213
        learning_rate = 0.01
        adagrad_optimizer = self.MockAdagrad(
            learning_rate=learning_rate, epsilon=1.0e-6)
F
fengjiayi 已提交
214
        params_grads = append_backward(mean_out)
215 216
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
217 218
        opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out,
                                                          init_program)
Y
Yancey1989 已提交
219 220 221
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "adagrad"])
222

223
        # Check accumulators
224 225 226 227 228 229 230
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
231 232 233 234 235 236 237 238
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

239

240 241 242 243 244 245 246 247 248 249 250 251
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
252
        init_program = framework.Program()
253 254 255
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
256 257 258 259 260
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
261 262 263 264 265 266 267 268 269 270
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
271 272 273 274
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
275
        learning_rate = 0.01
276
        adam_optimizer = self.MockAdam(
Q
Qiao Longfei 已提交
277
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
278
        params_grads = append_backward(mean_out)
279 280
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
281 282
        opts = adam_optimizer.create_optimization_pass(params_grads, mul_out,
                                                       init_program)
Y
Yancey1989 已提交
283 284 285 286
        self.assertEqual(len(opts), 5)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "adam", "scale", "scale"])
287 288 289 290 291 292 293 294 295 296 297 298 299

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
300 301 302 303 304 305
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

306

307 308 309 310 311 312 313 314 315 316 317 318
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
319
        init_program = framework.Program()
320 321 322
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
323 324 325 326 327
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
328 329 330 331 332 333 334 335 336 337
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
338 339 340 341
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
Q
Qiao Longfei 已提交
342
        learning_rate = 0.01
343
        adamax_optimizer = self.MockAdamax(
Q
Qiao Longfei 已提交
344
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
F
fengjiayi 已提交
345
        params_grads = append_backward(mean_out)
346 347
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
348 349
        opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out,
                                                         init_program)
Y
Yancey1989 已提交
350 351 352 353
        self.assertEqual(len(opts), 4)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "adamax", "scale"])
354 355 356 357 358 359 360 361 362 363 364 365 366

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
367 368 369 370 371 372
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

373

374 375 376 377 378 379 380 381 382 383 384 385 386
class TestDecayedAdagradOptimizer(unittest.TestCase):
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
Q
qiaolongfei 已提交
387 388 389 390 391
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
392 393 394 395 396 397 398 399 400 401
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
402 403 404 405
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
406 407 408
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
F
fengjiayi 已提交
409
        params_grads = append_backward(mean_out)
410 411 412 413
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
        opts = decayed_adagrad_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
Y
Yancey1989 已提交
414 415 416 417
        self.assertEqual(len(opts), 3)
        self.assertEqual(
            [op.type for op in opts],
            ["fill_constant", "elementwise_mul", "decayed_adagrad"])
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
            decayed_adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)


Q
qiaolongfei 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
class TestFtrlOptimizer(unittest.TestCase):
    class MockFtrl(optimizer.FtrlOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_squared_str(self):
            return self._squared_acc_str

        def get_linear_str(self):
            return self._linear_acc_str

    def test_ftrl_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1})
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out")
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
        learning_rate = 0.01
        ftrl_optimizer = self.MockFtrl(
            learning_rate=learning_rate, l1=0.0, l2=0.0, lr_power=-0.5)
        params_grads = append_backward(mean_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
        opts = ftrl_optimizer.create_optimization_pass(params_grads, mul_out,
                                                       init_program)
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts],
                         ["fill_constant", "elementwise_mul", "ftrl"])

        # Check accumulators
        accumulators = ftrl_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators)
        self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators)
        squared_acc = accumulators[ftrl_optimizer.get_squared_str()]
        linear_acc = accumulators[ftrl_optimizer.get_linear_str()]
        self.assertEqual(len(squared_acc), 1)
        self.assertEqual(len(linear_acc), 1)
        self.assertTrue(mul_x.name in squared_acc)
        self.assertTrue(mul_x.name in linear_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 3)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)


Q
Qiao Longfei 已提交
503 504
if __name__ == '__main__':
    unittest.main()