nn.py 347.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29 30
from .tensor import concat
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
X
Xin Pan 已提交
34
from ..imperative import layers
Y
Yu Yang 已提交
35 36

__all__ = [
X
Xin Pan 已提交
37 38 39 40 41 42 43 44 45 46
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
47
    'bpr_loss',
X
Xin Pan 已提交
48 49 50 51 52 53 54 55 56 57
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
58 59
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
60 61 62 63 64 65 66
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
67
    'sequence_unpad',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
76
    'sequence_slice',
X
Xin Pan 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
94
    'group_norm',
X
Xin Pan 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
108
    'roi_align',
X
Xin Pan 已提交
109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
113
    'resize_nearest',
X
Xin Pan 已提交
114 115 116 117 118 119
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
120
    'selu',
X
Xin Pan 已提交
121 122 123
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
124
    'margin_rank_loss',
X
Xin Pan 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
168
    'space_to_depth',
W
whs 已提交
169
    'affine_grid',
S
sneaxiy 已提交
170
    'sequence_reverse',
171
    'affine_channel',
B
barrierye 已提交
172
    'similarity_focus',
M
minqiyang 已提交
173
    'hash',
D
dengkaipeng 已提交
174
    'grid_sampler',
G
gmcather 已提交
175 176
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
177
    'bilinear_tensor_product',
C
chengduo 已提交
178 179
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
180
    'lstm',
S
sneaxiy 已提交
181
    'py_func',
182
    'psroi_pool',
M
minqiyang 已提交
183
    'huber_loss',
Y
Yu Yang 已提交
184 185
]

J
jerrywgz 已提交
186 187
kIgnoreIndex = -100

Y
Yu Yang 已提交
188 189 190 191 192 193 194

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
195
       is_test=False,
196
       name=None):
Y
Yu Yang 已提交
197
    """
198
    **Fully Connected Layer**
Y
Yu Yang 已提交
199

200 201 202 203 204 205 206 207
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
208
    to the output as well.
C
caoying03 已提交
209

C
caoying03 已提交
210
    This process can be formulated as follows:
211 212 213

    .. math::

214
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
215 216 217

    In the above equation:

C
caoying03 已提交
218 219 220 221
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
222
    * :math:`Act`: The activation function.
C
caoying03 已提交
223
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
224 225

    Args:
R
ranqiu 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
241 242
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
243
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
244
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
245
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
246

247
    Returns:
F
fengjiayi 已提交
248
        Variable: The transformation result.
249 250

    Raises:
C
caoying03 已提交
251
        ValueError: If rank of the input tensor is less than 2.
252 253 254 255

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
256
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
257
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
258
    """
C
caoying03 已提交
259

C
caoying03 已提交
260
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
261 262 263 264

    dtype = helper.input_dtype()

    mul_results = []
265 266
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
267 268 269
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
270

Y
Yu Yang 已提交
271
        w = helper.create_parameter(
272
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
273
        tmp = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
278
            outputs={"Out": tmp},
M
mozga-intel 已提交
279 280
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
281 282 283 284
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
285
    else:
X
Xin Pan 已提交
286
        pre_bias = helper.create_variable_for_type_inference(dtype)
287
        helper.append_op(
288 289 290
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
291
            attrs={"use_mkldnn": False})
292 293 294 295
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
296 297


298 299 300
def embedding(input,
              size,
              is_sparse=False,
301
              is_distributed=False,
302 303 304
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
305
    """
306 307
    **Embedding Layer**

308
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
309 310
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
311 312 313

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
314 315

    Args:
316 317 318 319 320
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
321
        is_distributed(bool): Whether to run lookup table from remote parameter server.
322 323
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
324
            with zeros whenever lookup encounters it in :attr:`input`. If
325
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
326 327
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
328
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
329

330 331 332
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
333

334 335
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
336

C
chengduoZH 已提交
337
          dict_size = len(dataset.ids)
338
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
339
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
340 341 342
    """

    helper = LayerHelper('embedding', **locals())
343 344 345
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
346 347
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
348 349
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
350
    tmp = helper.create_variable_for_type_inference(dtype)
351 352
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
353 354 355 356 357
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
358 359 360
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
361
            'remote_prefetch': remote_prefetch,
362 363
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
364 365 366
    return tmp


W
wopeizl 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
383

W
wopeizl 已提交
384 385 386 387 388 389 390 391 392 393 394
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
395

W
wopeizl 已提交
396 397 398 399
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
400

W
wopeizl 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
487 488


P
phlrain 已提交
489 490 491 492 493 494
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
495
         dropout_prob=0.0,
P
phlrain 已提交
496 497 498 499 500
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
501
    """
P
phlrain 已提交
502
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
503 504

    A four-gate Long Short-Term Memory network with no peephole connections.
505
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
506 507
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
531

532
    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
L
liuhongyu 已提交
533 534 535 536 537
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
538
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
539 540 541 542 543
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
544
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
545 546
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
547 548
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
549 550 551 552 553 554
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
555
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
556

L
liuhongyu 已提交
557 558 559 560 561 562

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
563
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
564 565
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
566
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
582
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
583 584 585 586 587 588
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
589 590 591
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
651 652 653 654 655 656 657 658 659 660 661
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
662 663
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
664 665 666
    """
    **Dynamic LSTMP Layer**

667 668 669 670 671 672
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
673 674 675 676 677

    The formula is as follows:

    .. math::

678
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
679

680
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
681

682
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
683

684
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
685

686
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
687

688
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
689

690
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
691

Y
Yibing Liu 已提交
692 693 694 695 696 697
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
698
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
699
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
700
          bias vector).
Y
Yibing Liu 已提交
701 702 703
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
704
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
705
    * :math:`h`: The hidden state.
706
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
707 708
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
709
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
710
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
711
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
712 713
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
714 715 716 717

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
718

Y
Yibing Liu 已提交
719 720 721 722 723 724 725 726 727 728 729 730
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
731
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
732 733
                               hidden-hidden weight and projection weight.

734 735
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
736 737
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
738 739
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
740
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
741 742 743 744 745

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
746
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
747 748 749 750 751 752
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
753
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
754 755 756
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
757
                                - The shape is (1 x 7D).
C
chengduo 已提交
758 759 760 761 762

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
763 764 765 766 767 768 769 770 771
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
772
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
773 774
                              default "tanh".
        proj_activation(str): The activation for projection output.
775
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
776 777
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
778 779
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
780 781

    Returns:
782 783 784 785
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
786 787

    Examples:
788

Y
Yibing Liu 已提交
789 790
        .. code-block:: python

791 792 793 794
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
795
            hidden_dim, proj_dim = 512, 256
796
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
797
                                     act=None, bias_attr=None)
798 799 800
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
801 802 803 804
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
805
    """
806

C
chengduo 已提交
807
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
808
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
809
    size = size // 4
Y
Yibing Liu 已提交
810 811 812 813 814 815 816 817 818 819
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
820 821 822 823 824 825
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
854 855 856 857 858 859 860 861 862
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
863
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
864

865
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
866
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
867

G
guosheng 已提交
868 869 870 871 872 873 874 875 876
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
877

G
guosheng 已提交
878
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
879

G
guosheng 已提交
880
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
881 882
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
883 884 885 886
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
887
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
888 889

    Args:
890 891
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
892
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
893
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
894 895
            is the hidden size.
        size(int): The dimension of the gru cell.
896
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
897 898
            hidden-hidden weight matrix. Note:

899
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
900
              :math:`D` is the hidden size.
901
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
902
              The first part are weights of the update gate and reset gate with
903
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
904
              candidate hidden state with shape :math:`(D \\times D)`.
905 906 907 908 909

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
910
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
911
            the bias in the update gate, reset gate and candidate calculations.
912 913 914
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
915 916
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
917
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
918 919 920
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
921
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
922
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
923 924 925 926
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
927 928

    Returns:
G
guosheng 已提交
929
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
930
            and sequence length is the same with the input.
931

G
guosheng 已提交
932
    Examples:
933

G
guosheng 已提交
934 935
        .. code-block:: python

936 937 938 939
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
940
            hidden_dim = 512
941
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
942
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
943 944 945 946 947 948 949 950 951
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
952
    batch_size = input.shape[0]
G
guosheng 已提交
953
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
954
    if h_0:
G
guosheng 已提交
955
        assert h_0.shape == (
Y
Yancey 已提交
956 957 958
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
959

X
Xin Pan 已提交
960 961 962 963
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
982 983 984
def gru_unit(input,
             hidden,
             size,
985 986
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
987
             activation='tanh',
988
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
989
    """
990
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
991

992 993
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
994

995
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
996

997
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
998

999
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
1000 1001

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1002 1003 1004
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1005 1006
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1007 1008
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1009 1010 1011
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1012 1013 1014

    Args:
        input (Variable): The fc transformed input value of current step.
1015
        hidden (Variable): The hidden value of gru unit from previous step.
1016
        size (integer): The input dimension value.
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1031
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1032
            the bias in the update gate, reset gate and candidate calculations.
1033 1034 1035
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1036 1037
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1038 1039 1040 1041
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1042

1043 1044 1045 1046 1047 1048
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1049

1050
             # assuming we have x_t_data and prev_hidden of size=10
1051
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1052 1053
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1066
    size = size // 3
Y
Yu Yang 已提交
1067 1068

    # create weight
1069 1070
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1071

X
Xin Pan 已提交
1072 1073 1074
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1075
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1076
    # create bias
1077
    if helper.bias_attr:
Y
Yu Yang 已提交
1078 1079 1080
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1081
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1082 1083 1084

    helper.append_op(
        type='gru_unit',
1085
        inputs=inputs,
Y
Yu Yang 已提交
1086 1087 1088 1089 1090 1091
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1092 1093
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1094 1095 1096 1097 1098
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1099
@templatedoc()
1100
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1101 1102 1103 1104 1105 1106 1107
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1108
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1109 1110 1111 1112
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1113 1114 1115
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1116 1117

    """
Y
Yu Yang 已提交
1118 1119 1120 1121 1122 1123
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1124 1125 1126 1127 1128 1129 1130 1131
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1147 1148 1149 1150
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1151

W
wopeizl 已提交
1152 1153
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1154

W
wopeizl 已提交
1155
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1156

W
wopeizl 已提交
1157
        label(${label_type}): ${label_comment}
1158

W
wopeizl 已提交
1159 1160
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1161

W
wopeizl 已提交
1162 1163
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1164

W
wopeizl 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1175
                "Transition": transition,
W
wopeizl 已提交
1176 1177
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1178

W
wopeizl 已提交
1179
    return viterbi_path
Y
Yu Yang 已提交
1180 1181


Y
yi.wu 已提交
1182
@templatedoc()
F
fengjiayi 已提交
1183
def cos_sim(X, Y):
Y
Yu Yang 已提交
1184
    """
Y
yi.wu 已提交
1185 1186 1187
    ${comment}

    Args:
1188 1189
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1190

Y
yi.wu 已提交
1191
    Returns:
1192
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1193
    """
F
fengjiayi 已提交
1194
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1195 1196 1197
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1208 1209 1210 1211 1212
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1213
            dropout_implementation="downgrade_in_infer"):
1214 1215 1216 1217 1218
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1219
    training. The dropout operator randomly sets (according to the given dropout
1220 1221 1222 1223
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1224 1225
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1226 1227 1228 1229 1230 1231 1232
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1244
                                           dropout op can be removed from the program.
P
phlrain 已提交
1245
                                           the program will be efficient
1246

P
phlrain 已提交
1247

1248 1249

    Returns:
1250
        Variable: A tensor variable is the shape with `x`.
1251 1252

    Examples:
1253

1254 1255
        .. code-block:: python

1256 1257
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1258 1259
    """

F
fengjiayi 已提交
1260
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1261 1262 1263
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1264 1265 1266 1267

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1268 1269 1270 1271 1272
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1273 1274 1275 1276
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1277 1278
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1279
        })
1280 1281 1282
    return out


J
jerrywgz 已提交
1283
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1284
    """
Y
Yibing Liu 已提交
1285 1286
    **Cross Entropy Layer**

1287 1288 1289
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1290 1291

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1292
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1293

Y
Yibing Liu 已提交
1294
        .. math::
Y
yangyaming 已提交
1295

Y
Yibing Liu 已提交
1296 1297 1298
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1299 1300
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1301 1302 1303 1304 1305

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1306
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1307 1308 1309
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1310 1311
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1312
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1313

Y
Yibing Liu 已提交
1314
    Args:
Y
yangyaming 已提交
1315
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1316 1317 1318 1319
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1320
        label (Variable|list): the ground truth which is a 2-D tensor. When
1321 1322 1323 1324
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1325
        soft_label (bool): a flag indicating whether to
1326
                                           interpretate the given labels as soft
1327
                                           labels. Default: `False`.
M
minqiyang 已提交
1328 1329
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1330
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1331 1332 1333 1334 1335

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1336 1337 1338 1339 1340
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1341 1342 1343 1344 1345 1346

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1347
    """
F
fengjiayi 已提交
1348
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1349
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1350 1351 1352 1353 1354
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1355 1356
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1357 1358 1359
    return out


F
frankwhzhang 已提交
1360
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1361 1362 1363
    """
    Bayesian Personalized Ranking Loss Operator.

1364
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1365 1366 1367 1368 1369 1370
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1371 1372 1373 1374 1375 1376
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1377 1378
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1379 1380 1381
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1382 1383 1384
    Examples:
        .. code-block:: python

1385
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1386
    """
1387 1388 1389 1390 1391 1392

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1393
                'Label': [label]},
1394 1395 1396 1397
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1398
def square_error_cost(input, label):
Y
Yu Yang 已提交
1399
    """
1400 1401
    **Square error cost layer**

1402 1403
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1418 1419
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1420 1421

    Returns:
G
guosheng 已提交
1422
        Variable: The tensor variable storing the element-wise squared error \
1423
                  difference of input and label.
1424 1425 1426 1427 1428 1429 1430 1431

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1432
    """
F
fengjiayi 已提交
1433
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1434
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1435 1436 1437 1438 1439 1440
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1441
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1442
    helper.append_op(
F
fengjiayi 已提交
1443 1444
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1445 1446 1447
    return square_out


Y
yi.wu 已提交
1448
@templatedoc()
Y
Yu Yang 已提交
1449 1450 1451 1452
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1453
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1454
    """
Y
yi.wu 已提交
1455
    **Chunk Evaluator**
Y
yi.wu 已提交
1456

Y
yangyaming 已提交
1457
    This function computes and outputs the precision, recall and
1458
    F1-score of chunk detection.
Y
yi.wu 已提交
1459

Y
yi.wu 已提交
1460 1461 1462 1463 1464 1465 1466 1467
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1468

Y
yi.wu 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1494

Y
yi.wu 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1519
    Args:
1520 1521 1522 1523 1524
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1525

Y
yi.wu 已提交
1526
    Returns:
Y
update  
yi.wu 已提交
1527 1528 1529
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1530

Y
yi.wu 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1543
    """
F
fengjiayi 已提交
1544
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1545 1546

    # prepare output
X
Xin Pan 已提交
1547 1548 1549 1550 1551 1552 1553
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1554 1555 1556 1557 1558 1559 1560 1561

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1562 1563 1564 1565
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1566 1567 1568
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1569 1570
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1571
        })
1572 1573
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1574 1575


1576
@templatedoc()
Y
Yu Yang 已提交
1577 1578 1579 1580 1581 1582 1583
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1584 1585
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1586 1587 1588 1589
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1590 1591 1592 1593 1594 1595 1596

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1610

1611 1612
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1613 1614 1615 1616 1617 1618 1619
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1620
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1631
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1632 1633 1634 1635 1636 1637
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1638
def sequence_softmax(input, use_cudnn=False, name=None):
1639 1640 1641
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1642
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1659 1660 1661
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1674 1675
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1676
    softmax_out = helper.create_variable_for_type_inference(dtype)
1677 1678 1679 1680 1681 1682 1683 1684
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1685
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1686
    """
1687
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1688
    has the same shape as the input.
Q
qiaolongfei 已提交
1689

1690 1691 1692 1693 1694 1695
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1696
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1697 1698 1699 1700 1701 1702 1703

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1704
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1705 1706 1707 1708 1709 1710 1711 1712

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1713 1714 1715
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1728 1729
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1730
    softmax_out = helper.create_variable_for_type_inference(dtype)
1731 1732 1733 1734 1735 1736 1737 1738
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1739 1740 1741
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1742 1743
           stride=1,
           padding=0,
1744
           dilation=1,
Y
Yu Yang 已提交
1745 1746 1747
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1748
           use_cudnn=True,
1749 1750
           act=None,
           name=None):
Y
Yu Yang 已提交
1751
    """
C
chengduoZH 已提交
1752
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1753 1754
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1755
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1756 1757 1758 1759 1760 1761 1762
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1763 1764 1765
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1766

1767
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1768

C
chengduoZH 已提交
1769 1770
    .. math::

C
refine  
chengduoZH 已提交
1771
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1772

T
tensor-tang 已提交
1773
    Where:
C
chengduoZH 已提交
1774

1775 1776 1777 1778 1779
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1780
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1781 1782 1783

    Example:

1784 1785
        - Input:

W
weixing02 已提交
1786
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1787

W
weixing02 已提交
1788
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1789

1790
        - Output:
T
tensor-tang 已提交
1791

W
weixing02 已提交
1792
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1793

C
chengduoZH 已提交
1794
        Where
1795 1796

        .. math::
C
chengduoZH 已提交
1797

W
weixing02 已提交
1798 1799
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1800 1801

    Args:
1802
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1803
        num_filters(int): The number of filter. It is as same as the output
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1832 1833
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1834 1835
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1836
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1837
            will be named automatically. Default: None
C
chengduoZH 已提交
1838 1839

    Returns:
G
guosheng 已提交
1840
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1841 1842
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1843
    Raises:
1844 1845
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1846

C
chengduoZH 已提交
1847 1848 1849
    Examples:
        .. code-block:: python

1850 1851
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1852 1853 1854
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1855
    assert param_attr is not False, "param_attr should not be False here."
1856
    l_type = 'conv2d'
X
xzl 已提交
1857 1858
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1859
        l_type = 'depthwise_conv2d'
1860 1861 1862 1863

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1864 1865 1866 1867 1868
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1869
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1870

C
chengduoZH 已提交
1871 1872 1873
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1874
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1875

C
chengduoZH 已提交
1876 1877
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1878 1879

    input_shape = input.shape
M
minqiyang 已提交
1880
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1881 1882

    def _get_default_param_initializer():
C
chengduo 已提交
1883 1884
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1885 1886 1887 1888 1889 1890 1891 1892
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1893
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1894

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1909
    helper.append_op(
1910
        type=l_type,
Y
Yu Yang 已提交
1911 1912 1913 1914 1915
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1916 1917 1918
        attrs={
            'strides': stride,
            'paddings': padding,
1919
            'dilations': dilation,
C
chengduoZH 已提交
1920
            'groups': groups,
1921
            'use_cudnn': use_cudnn,
1922
            'use_mkldnn': False,
C
chengduoZH 已提交
1923
        })
Y
Yu Yang 已提交
1924 1925 1926 1927 1928 1929

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1947 1948 1949 1950 1951 1952
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1962 1963
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1964 1965 1966
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1967
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1993
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1994 1995
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1996
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1997 1998
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1999
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2000 2001
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2002
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2003 2004 2005 2006 2007 2008
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2019 2020
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2021 2022
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2023
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2024
            will be named automatically. Default: None.
C
chengduoZH 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2037 2038
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2039 2040 2041
    """

    l_type = 'conv3d'
C
chengduo 已提交
2042
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2053
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2067 2068 2069
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2070 2071 2072 2073 2074 2075 2076 2077
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2078
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2093
            'use_mkldnn': False
C
chengduoZH 已提交
2094 2095
        })

2096
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2097 2098 2099 2100

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2101
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2102
    """
Y
yangyaming 已提交
2103 2104 2105
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2117
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2118 2119 2120 2121 2122
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2123
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2124 2125 2126 2127 2128 2129 2130

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2131 2132
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2133

L
Luo Tao 已提交
2134 2135
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2136
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2137
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2138
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2139 2140 2141 2142 2143 2144 2145

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2146

Y
yangyaming 已提交
2147
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2148 2149 2150 2151 2152
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2153 2154
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2155
    """
F
fengjiayi 已提交
2156
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2157
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2158 2159
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2160 2161 2162 2163 2164 2165

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2166 2167
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2168

Y
yangyaming 已提交
2169 2170 2171 2172 2173
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2174 2175 2176
    return pool_out


C
add doc  
chengduoZH 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2196
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2197 2198 2199 2200 2201
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2202
def sequence_first_step(input):
L
Luo Tao 已提交
2203
    """
L
Luo Tao 已提交
2204
    This function gets the first step of sequence.
L
Luo Tao 已提交
2205 2206 2207 2208

    .. code-block:: text

       x is a 1-level LoDTensor:
2209
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2210 2211 2212 2213 2214
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2215
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2216
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2217

L
Luo Tao 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2227

Y
yangyaming 已提交
2228
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2229 2230 2231
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2232 2233 2234
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2235
def sequence_last_step(input):
L
Luo Tao 已提交
2236
    """
L
Luo Tao 已提交
2237
    This function gets the last step of sequence.
L
Luo Tao 已提交
2238 2239 2240 2241

    .. code-block:: text

       x is a 1-level LoDTensor:
2242
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2243 2244 2245 2246 2247
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2248
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2249
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2250

L
Luo Tao 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2260

Y
yangyaming 已提交
2261
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2262 2263 2264
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2265 2266 2267
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2268 2269 2270 2271
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2272
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2273 2274 2275 2276 2277
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2278

Y
Yibing Liu 已提交
2279 2280
	- Case:

2281
            Given the input Variable **input**:
2282

2283 2284 2285
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2286

2287
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2288

2289
            the output Variable will be
2290

2291 2292 2293
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2294 2295

    NOTE: The first dimension size of **input**, **offset** and **length**
2296
          should be equal. The **offset** should start from 0.
2297

Y
Yibing Liu 已提交
2298
    Args:
2299
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2300
                         sequences.
Y
Yibing Liu 已提交
2301 2302 2303 2304 2305 2306
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2307
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2318
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2319 2320 2321 2322
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2323
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2338
@templatedoc()
Y
Yu Yang 已提交
2339
def pool2d(input,
C
chengduoZH 已提交
2340 2341
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2342 2343
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2344
           global_pooling=False,
C
chengduoZH 已提交
2345
           use_cudnn=True,
2346
           ceil_mode=False,
2347 2348
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2349
    """
F
fengjiayi 已提交
2350
    ${comment}
2351 2352

    Args:
2353 2354 2355
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2356
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2357
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2358 2359
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2360
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2361 2362 2363 2364 2365 2366
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2367 2368 2369
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2370
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2371
                        layer will be named automatically.
2372
        exclusive (bool): Whether to exclude padding points in average pooling
2373
                          mode, default is true
F
fengjiayi 已提交
2374

2375
    Returns:
F
fengjiayi 已提交
2376
        Variable: The pooling result.
F
fengjiayi 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2390 2391 2392 2393
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2394
                            global_pooling=False)
Y
Yu Yang 已提交
2395 2396 2397 2398 2399
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2400

C
chengduoZH 已提交
2401 2402 2403 2404 2405
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2406 2407 2408 2409
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2410 2411
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2412

C
Add doc  
chengduoZH 已提交
2413
    l_type = 'pool2d'
2414 2415

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2416
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2417
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2418 2419

    helper.append_op(
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2431 2432
            "use_mkldnn": False,
            "exclusive": exclusive,
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2446 2447
           name=None,
           exclusive=True):
2448 2449
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2450
    pooling configurations mentioned in input parameters.
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2463
        exclusive (bool): Whether to exclude padding points in average pooling
2464
                          mode, default is true
2465

2466
    Returns:
2467
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2468 2469 2470 2471 2472
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2473

C
chengduoZH 已提交
2474 2475 2476 2477 2478
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2479 2480 2481
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2482

C
chengduoZH 已提交
2483 2484
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2485

2486 2487
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2488
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2489
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2490 2491

    helper.append_op(
2492
        type=l_type,
Y
Yu Yang 已提交
2493 2494 2495 2496 2497 2498 2499
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2500
            "paddings": pool_padding,
2501
            "use_cudnn": use_cudnn,
2502
            "ceil_mode": ceil_mode,
2503 2504
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2505 2506 2507 2508 2509
        })

    return pool_out


2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2543
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2544
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2545
          # of input data into m * n grids averagely and performs poolings in each
2546 2547
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2548
          #
2549 2550 2551 2552 2553 2554 2555 2556
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2557 2558
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2559
          pool_out = fluid.layers.adaptive_pool2d(
2560 2561
                            input=data,
                            pool_size=[3, 3],
2562
                            pool_type='avg')
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2604
    return (pool_out, mask) if require_index else pool_out
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2640 2641
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2642
          # of input data into l * m * n grids averagely and performs poolings in each
2643 2644
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2645
          #
2646 2647 2648 2649 2650 2651 2652 2653 2654
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2655
          #                 output[:, :, i, j, k] =
2656 2657
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2658 2659
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2660
          pool_out, mask = fluid.layers.adaptive_pool3d(
2661 2662
                            input=data,
                            pool_size=[3, 3],
2663
                            pool_type='avg')
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2705
    return (pool_out, mask) if require_index else pool_out
2706 2707


Y
Yu Yang 已提交
2708 2709 2710 2711 2712 2713 2714
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2715
               data_layout='NCHW',
Y
Yang Yang 已提交
2716
               in_place=False,
2717 2718
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2719
               moving_variance_name=None,
2720
               do_model_average_for_mean_and_var=False,
2721 2722
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2723
    """
Q
qiaolongfei 已提交
2724 2725 2726 2727
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2728

Q
qiaolongfei 已提交
2729
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2730

Q
qiaolongfei 已提交
2731 2732
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2733 2734 2735
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2762
    Args:
Q
qiaolongfei 已提交
2763
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2764 2765 2766 2767
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2768 2769 2770 2771 2772 2773 2774 2775
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2776
        data_layout(string, default NCHW): NCHW|NHWC
2777
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2778 2779 2780 2781
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2782
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2783
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2784 2785 2786 2787 2788
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2789 2790

    Returns:
Q
qiaolongfei 已提交
2791
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2792 2793 2794 2795 2796 2797 2798

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2799
    """
C
chengduo 已提交
2800
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2801 2802 2803
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
2804 2805 2806 2807
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2825 2826 2827
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2828 2829

    bias = helper.create_parameter(
2830
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2831 2832 2833
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2834

2835 2836
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2837 2838 2839
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2840
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2841
        shape=param_shape,
W
Wu Yi 已提交
2842
        dtype=dtype)
2843 2844 2845 2846 2847 2848
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2849
            trainable=False,
W
wanghaoshuang 已提交
2850
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2851
        shape=param_shape,
W
Wu Yi 已提交
2852
        dtype=dtype)
2853
    variance.stop_gradient = True
Y
Yu Yang 已提交
2854 2855 2856 2857 2858 2859

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2860 2861 2862 2863
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2864

X
Xin Pan 已提交
2865 2866
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2884 2885 2886 2887
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2888
            "use_mkldnn": False,
2889 2890
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2891
        })
Y
Yu Yang 已提交
2892 2893 2894 2895

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2896
@templatedoc()
G
guosheng 已提交
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2907
    ${comment}
G
guosheng 已提交
2908 2909 2910

    The formula is as follows:

Y
yuyang18 已提交
2911
    ..  math::
G
guosheng 已提交
2912 2913 2914 2915 2916 2917 2918

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2919 2920 2921 2922 2923 2924 2925 2926
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2927

G
guosheng 已提交
2928 2929
    Args:
        input(Variable): The input tensor variable.
2930
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2931
            normalization. Default True.
2932
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2933 2934
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2935
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2936
            Default 1.
2937
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2938
            division by zero. Default 1e-05.
G
guosheng 已提交
2939
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2940 2941
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2942 2943
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2944
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2945 2946
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2947
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2948
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2949
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2950 2951 2952
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2953 2954

    Returns:
Y
yuyang18 已提交
2955
        ${y_comment}
G
guosheng 已提交
2956 2957 2958

    Examples:

Y
yuyang18 已提交
2959 2960 2961
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2977
    if shift:
G
guosheng 已提交
2978 2979 2980 2981 2982 2983
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2984 2985 2986 2987 2988
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3082 3083 3084 3085
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3086 3087 3088
                     padding=0,
                     stride=1,
                     dilation=1,
3089
                     groups=None,
C
caoying03 已提交
3090
                     param_attr=None,
3091
                     bias_attr=None,
C
chengduoZH 已提交
3092
                     use_cudnn=True,
3093
                     act=None,
C
caoying03 已提交
3094
                     name=None):
Y
Yu Yang 已提交
3095
    """
3096 3097 3098 3099 3100 3101 3102 3103
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3104 3105
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3106 3107 3108
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3109 3110 3111 3112 3113

    For each input :math:`X`, the equation is:

    .. math::

3114
        Out = \sigma (W \\ast X + b)
3115

3116
    Where:
3117 3118 3119

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3120 3121 3122 3123
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3124

3125 3126 3127 3128
    Example:

        - Input:

3129
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3130

3131
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3132 3133 3134

        - Output:

3135
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3136 3137

        Where
Y
Yu Yang 已提交
3138

3139 3140
        .. math::

3141 3142 3143 3144
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3145 3146

    Args:
3147 3148 3149 3150
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3151 3152 3153 3154
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3183
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3184 3185 3186
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3187
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3188
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3189 3190

    Returns:
3191
        Variable: The tensor variable storing the convolution transpose result.
3192 3193

    Raises:
3194 3195
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3196 3197 3198 3199

    Examples:
       .. code-block:: python

3200 3201
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3202
    """
C
chengduo 已提交
3203
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3204 3205 3206 3207 3208 3209 3210 3211
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3212 3213 3214
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3215 3216 3217
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3218

C
chengduoZH 已提交
3219 3220
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3221

Y
Yu Yang 已提交
3222 3223 3224 3225 3226
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3227

Y
Yu Yang 已提交
3228 3229
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3230

C
chengduoZH 已提交
3231
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3232
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3233
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3234
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3235
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3236 3237 3238
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3239

3240 3241 3242 3243 3244 3245 3246
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3247
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3248
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3249

Y
Yu Yang 已提交
3250 3251 3252
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3253
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3254
    helper.append_op(
3255
        type=op_type,
Y
Yu Yang 已提交
3256 3257
        inputs={'Input': [input],
                'Filter': [img_filter]},
3258
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3259
        attrs={
3260
            'output_size': output_size,
3261 3262 3263 3264 3265
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3266 3267
        })

3268 3269 3270
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3271 3272


3273
def conv3d_transpose(input,
Y
Yu Yang 已提交
3274 3275 3276
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3277 3278 3279
                     padding=0,
                     stride=1,
                     dilation=1,
3280
                     groups=None,
C
caoying03 已提交
3281
                     param_attr=None,
3282
                     bias_attr=None,
C
chengduoZH 已提交
3283
                     use_cudnn=True,
3284
                     act=None,
C
caoying03 已提交
3285
                     name=None):
Y
Yu Yang 已提交
3286
    """
3287
    **Convlution3D transpose layer**
3288

3289
    The convolution3D transpose layer calculates the output based on the input,
3290
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3291 3292 3293 3294 3295 3296
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3297 3298 3299
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3300 3301 3302 3303 3304

    For each input :math:`X`, the equation is:

    .. math::

3305
        Out = \sigma (W \\ast X + b)
3306 3307 3308

    In the above equation:

3309 3310
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3311 3312 3313 3314
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3315

3316 3317 3318 3319
    Example:

        - Input:

3320
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3321

3322
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3323 3324 3325

        - Output:

3326
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3327 3328

        Where
Y
Yu Yang 已提交
3329

3330 3331
        .. math::

3332 3333 3334
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3335 3336

    Args:
3337
        input(Variable): The input image with [N, C, D, H, W] format.
3338 3339 3340
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3341
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3342 3343
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3344
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3345 3346 3347
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3348 3349
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3350
        stride(int|tuple): The stride size. If stride is a tuple, it must
3351 3352
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3353
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3354 3355 3356
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3357 3358 3359 3360 3361
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3371 3372
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3373 3374
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3375 3376
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3377 3378

    Returns:
3379
        Variable: The tensor variable storing the convolution transpose result.
3380 3381

    Raises:
3382 3383
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3384 3385 3386 3387

    Examples:
       .. code-block:: python

3388 3389
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3390
    """
C
chengduo 已提交
3391
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3392 3393
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3394
    if not isinstance(input, Variable):
3395
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3396 3397
    input_channel = input.shape[1]

3398 3399 3400
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3401

C
chengduoZH 已提交
3402 3403 3404
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3405 3406 3407 3408 3409 3410
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3411 3412 3413
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3414

3415
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3416
                         padding[0] - 1) // dilation[0] + 1
3417
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3418
                         padding[1] - 1) // dilation[1] + 1
3419
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3420
                         padding[2] - 1) // dilation[2] + 1
3421
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3422
    else:
3423 3424
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3425

3426
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3427
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3428 3429 3430
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3431
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3432
    helper.append_op(
3433
        type=l_type,
Y
Yu Yang 已提交
3434 3435
        inputs={'Input': [input],
                'Filter': [img_filter]},
3436
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3437 3438 3439 3440
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3441
            'groups': groups,
C
chengduoZH 已提交
3442 3443
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3444

3445 3446
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3447
    return out
Y
yangyaming 已提交
3448 3449


Y
yangyaming 已提交
3450
def sequence_expand(x, y, ref_level=-1, name=None):
3451
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3452 3453 3454 3455
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3456 3457 3458 3459 3460

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3461
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3462
                x.data = [[a], [b], [c], [d]]
3463 3464 3465
                x.dims = [4, 1]

            y is a LoDTensor:
3466 3467
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3468

Y
yangyaming 已提交
3469
            ref_level: 0
3470

Y
yangyaming 已提交
3471
            then output is a 1-level LoDTensor:
3472
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3473
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3474 3475 3476 3477
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3478
                x.data = [[a], [b], [c]]
3479 3480 3481
                x.dims = [3, 1]

            y is a LoDTensor:
3482
                y.lod = [[2, 0, 3]]
3483

Y
yangyaming 已提交
3484
            ref_level: -1
3485

Y
yangyaming 已提交
3486 3487 3488
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3489 3490 3491
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3492 3493
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3494
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3495
                        will be named automatically.
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3506
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3507
    """
Y
yangyaming 已提交
3508
    helper = LayerHelper('sequence_expand', input=x, **locals())
3509
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3510
    tmp = helper.create_variable_for_type_inference(dtype)
3511
    helper.append_op(
Y
yangyaming 已提交
3512 3513 3514 3515 3516
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3517
    return tmp
3518 3519


C
chengduo 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3576
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3577 3578 3579 3580 3581 3582 3583 3584
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3585
@templatedoc()
3586
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3587 3588 3589 3590 3591
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3592 3593 3594
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3595
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3596 3597 3598 3599
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3600 3601 3602
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3603

F
fengjiayi 已提交
3604
    Returns:
M
minqiyang 已提交
3605
        Variable: The padded sequence batch and the original lengths before
3606
                  padding. All sequences has the same length.
M
minqiyang 已提交
3607

F
fengjiayi 已提交
3608 3609 3610 3611 3612 3613 3614
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3615
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3616
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3617 3618 3619 3620 3621
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3622 3623
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3624 3625 3626 3627

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3628 3629 3630 3631 3632 3633
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3634 3635
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3636
        attrs={'padded_length': maxlen})
3637
    return out, length
F
fengjiayi 已提交
3638 3639


3640
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3641
    """
3642
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3643

3644 3645
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3655 3656 3657
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3658
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3659 3660 3661 3662 3663 3664

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3665
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3666 3667 3668 3669 3670 3671

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3672 3673
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3688
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3700 3701 3702 3703 3704 3705 3706 3707 3708
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3709 3710
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3711 3712 3713

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3714 3715

    This layer does the search in beams for one time step. Specifically, it
3716 3717 3718 3719 3720 3721
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3722

3723 3724 3725 3726 3727 3728 3729 3730
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3731

3732
    Args:
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3758

3759
    Returns:
3760 3761
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3762 3763 3764 3765

    Examples:
        .. code-block:: python

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3783 3784 3785 3786
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3787 3788 3789
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3790 3791 3792 3793 3794

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3795
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3813 3814 3815 3816 3817 3818 3819
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3820

3821 3822 3823 3824 3825 3826 3827 3828 3829
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3830

3831 3832 3833 3834 3835 3836
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3837

3838 3839
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3840

3841 3842 3843 3844 3845 3846
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3847 3848
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3864 3865 3866 3867
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3868
              param_attr=None,
C
caoying03 已提交
3869 3870
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3871 3872 3873 3874
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3875
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3876

3877
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3878

3879
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3880

3881
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3882 3883 3884

            h_t & = o_t tanh(c_t)

3885 3886 3887 3888 3889 3890
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3891 3892 3893

        .. math::

3894
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3895 3896 3897 3898 3899 3900 3901 3902

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3903
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3904 3905

    Args:
Y
yangyaming 已提交
3906 3907 3908 3909 3910 3911
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3912
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3925 3926
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3927 3928

    Returns:
Y
yangyaming 已提交
3929
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3930 3931

    Raises:
3932 3933 3934 3935
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3936 3937 3938 3939 3940 3941

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3942
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3943
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3944
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3961
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3962 3963 3964 3965
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3966 3967
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3968 3969 3970
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3971
    size = cell_t_prev.shape[1]
3972
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3973 3974
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3975
                param_attr=param_attr,
3976
                bias_attr=bias_attr)
Y
yangyaming 已提交
3977
    dtype = x_t.dtype
X
Xin Pan 已提交
3978 3979
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3989
    return h, c
G
guosheng 已提交
3990 3991


C
caoying03 已提交
3992
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3993
    """
Y
yangyaming 已提交
3994
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3995 3996 3997

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3998
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3999 4000
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4001 4002
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4003
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4004
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4005
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4006 4007
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4008 4009 4010

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4011

G
guosheng 已提交
4012 4013 4014 4015 4016 4017
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4018
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4019 4020 4021 4022
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4023 4024 4025 4026

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4027
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4028 4029 4030
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4031 4032
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4033
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4034 4035
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4036 4037 4038 4039 4040
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4041
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4042 4043 4044 4045
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4046 4047


C
caoying03 已提交
4048
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4049
    """
Y
Yibing Liu 已提交
4050
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4051 4052 4053

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4054 4055 4056
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4057
            must be in the range :math:`[-rank(input), rank(input))`. If
4058
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4059
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4060 4061
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4062
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4063
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4064
                       will be named automatically.
G
guosheng 已提交
4065 4066

    Returns:
Y
Yibing Liu 已提交
4067
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4068

G
guosheng 已提交
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4079 4080
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4081 4082 4083 4084 4085 4086 4087

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4088 4089
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4090
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4091 4092
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4093 4094 4095 4096 4097
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4098
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4099 4100 4101 4102
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4103 4104


C
caoying03 已提交
4105
def reduce_max(input, dim=None, keep_dim=False, name=None):
4106
    """
Y
yangyaming 已提交
4107
    Computes the maximum of tensor elements over the given dimension.
4108 4109 4110

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4111
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4112 4113 4114
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4115
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4116 4117
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4118
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4119 4120
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4121 4122 4123

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4124

4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4136 4137 4138 4139 4140 4141 4142

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4143 4144
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4145
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4146 4147
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4148 4149 4150 4151 4152
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4153
            'dim': dim if dim != None else [0],
4154 4155 4156 4157 4158 4159
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4160
def reduce_min(input, dim=None, keep_dim=False, name=None):
4161
    """
Y
yangyaming 已提交
4162
    Computes the minimum of tensor elements over the given dimension.
4163 4164 4165

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4166
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4167 4168 4169
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4170
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4171 4172
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4173
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4174 4175
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4176 4177 4178

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4179

4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4191 4192 4193 4194 4195 4196 4197

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4198 4199
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4200
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4201 4202
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4203 4204 4205 4206 4207
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4208
            'dim': dim if dim != None else [0],
4209 4210 4211 4212
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4213 4214


4215 4216 4217 4218 4219 4220
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4221
        dim (list|int|None): The dimensions along which the product is performed. If
4222 4223
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4224 4225
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4226 4227 4228
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4229
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4230
            layer will be named automatically.
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4245
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4246
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4247 4248 4249 4250 4251 4252 4253

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4254 4255
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4256
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4257 4258
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4259 4260 4261 4262 4263
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4264
            'dim': dim if dim != None else [0],
4265 4266 4267 4268 4269 4270
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4271
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4272
    """
C
caoying03 已提交
4273
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4274 4275 4276

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4277 4278 4279 4280 4281
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4282
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4283
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4284
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4285 4286
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4287 4288

    Returns:
D
dzhwinter 已提交
4289
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4290 4291 4292 4293 4294 4295 4296 4297 4298

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4299 4300
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4316
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4339
    .. math::
4340 4341

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4342 4343 4344 4345 4346

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4347
        x(Variable|list): The input tensor to l2_normalize layer.
4348
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4349 4350
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4351
        epsilon(float): The epsilon value is used to avoid division by zero, \
4352
            the defalut value is 1e-10.
4353
        name(str|None): A name for this layer(optional). If set None, the layer \
4354
            will be named automatically.
C
caoying03 已提交
4355 4356

    Returns:
4357
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4358 4359

    Examples:
4360

C
caoying03 已提交
4361 4362
        .. code-block:: python

4363 4364 4365 4366
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4367 4368
    """

F
fengjiayi 已提交
4369 4370
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4371 4372
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4373 4374
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4375
    helper.append_op(
4376 4377 4378 4379
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4380
        attrs={
4381 4382
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4383 4384
        })
    return out
4385 4386


S
sneaxiy 已提交
4387
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4388
    """
Y
ying 已提交
4389 4390 4391 4392
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4393

C
chengduoZH 已提交
4394
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4395
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4396

4397 4398 4399 4400 4401
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4402
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4403

C
chengduoZH 已提交
4404
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4405
      performs in the following way.
G
guosheng 已提交
4406

4407
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4408
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4409
        last two dimensions and a batched matrix multiply supporting broadcast
4410
        applies on the two tensors.
G
guosheng 已提交
4411

Y
ying 已提交
4412 4413
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4414
    removed after matrix multiplication.
G
guosheng 已提交
4415 4416 4417

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4418 4419 4420
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4421
        alpha (float): The scale of output. Default 1.0.
4422
        name(str|None): A name for this layer(optional). If set None, the layer
4423
            will be named automatically.
G
guosheng 已提交
4424 4425

    Returns:
4426
        Variable: The product Tensor variable.
G
guosheng 已提交
4427

G
guosheng 已提交
4428 4429 4430
    Examples:
        .. code-block:: python

4431
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4432 4433
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4434

4435 4436
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4437

4438 4439
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4440

4441 4442
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4443 4444 4445 4446

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4447 4448
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4449

Y
ying 已提交
4450
            # x: [M], y: [N]
4451
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4452
    """
Y
ying 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4465
            y_shape = y_shape + [1]
Y
ying 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4482
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4483
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4484
    helper.append_op(
4485 4486 4487 4488
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4489 4490 4491
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4492
            'alpha': float(alpha),
S
sneaxiy 已提交
4493
        })
4494
    return out
4495 4496


4497
def topk(input, k, name=None):
Q
qingqing01 已提交
4498 4499 4500 4501
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4502
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4503 4504 4505 4506 4507 4508
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4530 4531 4532
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4533
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4534
                 of input.
4535
        name(str|None): A name for this layer(optional). If set None, the layer
4536
                       will be named automatically.
F
fengjiayi 已提交
4537
                       Default: None
Q
qingqing01 已提交
4538 4539

    Returns:
4540 4541 4542
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4543
        within the last dimension of input.
Q
qingqing01 已提交
4544

F
fengjiayi 已提交
4545 4546
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4547 4548 4549 4550 4551 4552 4553

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4554 4555
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
4556 4557 4558 4559 4560 4561
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
4562 4563
    helper.append_op(
        type="top_k",
W
whs 已提交
4564
        inputs=inputs,
Q
qingqing01 已提交
4565 4566
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4567
        attrs=attrs)
Q
qingqing01 已提交
4568 4569 4570 4571 4572
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4573
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4574
    """
Y
ying 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4584

Y
ying 已提交
4585
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4586

4587
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4588 4589
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4590
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4591

4592
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4593 4594
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4595

4596 4597 4598
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4599
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4600
                          the length of reference string.
4601
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4602
                                     calculating edit distance.
4603
        name (str): The name of this layer. It is optional.
4604

W
wanghaoshuang 已提交
4605
    Returns:
W
wanghaoshuang 已提交
4606
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4607 4608 4609 4610

    Examples:
        .. code-block:: python

T
tink2123 已提交
4611 4612
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4613
            cost = fluid.layers.edit_distance(input=x,label=y)
4614
    """
4615
    helper = LayerHelper("edit_distance", **locals())
4616

4617
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4618
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4619 4620
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4621 4622 4623 4624 4625

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4626
            attrs={"tokens": ignored_tokens})
4627 4628 4629 4630 4631
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4632
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4633
            attrs={"tokens": ignored_tokens})
4634 4635
        label = erased_label

4636
    # edit distance op
X
Xin Pan 已提交
4637 4638
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4639 4640 4641 4642
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4643 4644
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4645 4646
        attrs={"normalized": normalized})

4647
    return edit_distance_out, sequence_num
4648 4649 4650 4651 4652


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4653

Y
ying 已提交
4654 4655 4656 4657
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4675
        input.lod = [[4, 4]]
4676

W
whs 已提交
4677
        Computation:
4678

W
whs 已提交
4679 4680 4681 4682 4683 4684
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4685 4686 4687 4688 4689

        output.data = [[2],
                       [1],
                       [3]]

4690
        output.lod = [[2, 1]]
4691

W
whs 已提交
4692

4693 4694
    Args:

Y
ying 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4704
        name (str): The name of this layer. It is optional.
4705 4706

    Returns:
W
whs 已提交
4707 4708
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
4709
                  in result were empty, the result LoDTensor will be [-1] with
W
whs 已提交
4710
                  LoD [[]] and dims [1, 1].
4711 4712 4713 4714 4715

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4716

4717
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4718
    """
4719
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4720
    _, topk_indices = topk(input, k=1)
4721 4722

    # ctc align op
X
Xin Pan 已提交
4723
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4724 4725 4726
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4727
        outputs={"Output": [ctc_out]},
4728 4729
        attrs={"merge_repeated": True,
               "blank": blank})
4730
    return ctc_out
4731 4732


W
Wu Yi 已提交
4733
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4734
    """
4735 4736
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4737
    to compute Connectionist Temporal Classification (CTC) loss.
4738 4739
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4740 4741 4742
    input tensor.

    Args:
4743
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4744 4745 4746 4747
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4748
       label (Variable): The ground truth of variable-length sequence,
4749 4750 4751
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4752 4753
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4754 4755 4756
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4757
         follewed by a mean_op.
W
Wu Yi 已提交
4758
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4759 4760

    Returns:
4761 4762
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4763 4764

    Examples:
4765

W
wanghaoshuang 已提交
4766
        .. code-block:: python
4767

4768 4769 4770
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4771 4772

    """
F
fengjiayi 已提交
4773
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4774 4775
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4776 4777 4778 4779 4780 4781
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4782 4783 4784 4785 4786
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4787
    return loss_out
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4803 4804 4805
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4806 4807 4808 4809 4810
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4811

4812
            out.lod  = [[0, 1, 3]]
4813 4814 4815 4816

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4817 4818 4819 4820 4821 4822 4823
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4824 4825 4826

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4827 4828

    Returns:
4829

4830 4831 4832 4833 4834
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4835
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4836
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4837 4838
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4839
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4840 4841 4842 4843 4844 4845
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4846 4847


4848 4849 4850 4851
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4852 4853 4854 4855 4856 4857
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4858
        num_neg_samples=None,
4859 4860 4861
        name=None,
        sampler="uniform",
        custom_dist=None,
4862 4863
        seed=0,
        is_sparse=False):
4864 4865 4866 4867 4868 4869 4870
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4871 4872
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4873
            sample is 1.0.
C
chengduo 已提交
4874 4875 4876 4877 4878 4879 4880 4881 4882
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4883
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4884 4885
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4886 4887 4888
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4889
        custom_dist (float[]): A float[] with size=num_total_classes.
4890 4891 4892 4893
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4894
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4895

4896
    Returns:
Y
Yibing Liu 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4924 4925 4926 4927 4928 4929 4930 4931 4932

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4933

4934
    """
Y
Yang Yu 已提交
4935 4936 4937
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4938 4939

    dim = input.shape[1]
Y
Yang Yu 已提交
4940 4941 4942 4943 4944 4945
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4946
    inputs = {}
C
chengduo 已提交
4947 4948 4949 4950 4951 4952 4953
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4954 4955 4956
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4957

4958 4959 4960 4961
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4962 4963 4964 4965 4966 4967 4968

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5021 5022 5023 5024
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5025 5026 5027 5028 5029
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5030 5031
    attrs = {
        'num_total_classes': int(num_total_classes),
5032 5033
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5034 5035
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5036
    }
Y
Yang Yu 已提交
5037 5038 5039

    helper.append_op(
        type='nce',
C
chengduo 已提交
5040
        inputs=inputs,
Y
Yang Yu 已提交
5041 5042 5043 5044 5045 5046
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5047
    return cost / (num_neg_samples + 1)
5048 5049


C
chengduo 已提交
5050 5051
def hsigmoid(input,
             label,
5052
             num_classes,
C
chengduo 已提交
5053 5054
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5055
             name=None,
5056 5057 5058
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5059
             is_sparse=False):
W
weixing02 已提交
5060 5061
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5062
    process of language model. This operator organizes the classes into a
5063
    complete binary tree, or you can use is_custom to pass your own tree to
5064
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5065 5066 5067 5068 5069 5070
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5071
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5072
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5073

5074 5075 5076 5077 5078
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
5079
        4. now, each word should has its path and code along the path, you can pass a batch of path and code
5080 5081 5082
        related to the same batch of inputs.


W
weixing02 已提交
5083
    Args:
M
minqiyang 已提交
5084
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5085 5086 5087 5088
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5089 5090
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5091
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5103
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5104
            it should be in leaf -> root order
5105 5106 5107
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5108
            each code consist with every code of parent nodes. it should be in leaf -> root order
5109
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5110
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5111
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5112
             of W and input will be sparse.
W
weixing02 已提交
5113 5114

    Returns:
J
JiabinYang 已提交
5115
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5116 5117 5118 5119 5120

    Examples:

        .. code-block:: python

G
guosheng 已提交
5121 5122 5123
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5124 5125 5126 5127
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5128 5129
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5130
    dim = input.shape[1]
5131
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5132 5133 5134
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5135 5136 5137 5138
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5139 5140
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5141 5142 5143
    else:
        pass

J
JiabinYang 已提交
5144 5145
    weights = None

5146
    if not is_custom:
J
JiabinYang 已提交
5147 5148 5149 5150 5151 5152 5153 5154
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5155
            shape=[num_classes, dim],
J
JiabinYang 已提交
5156 5157
            is_bias=False,
            dtype=input.dtype)
5158 5159 5160
    inputs = {
        "X": input,
        "W": weights,
5161 5162
        "PTable": path_table,
        "PathCode": path_code,
5163 5164
        "Label": label
    }
W
weixing02 已提交
5165
    if helper.bias_attr:
5166
        if not is_custom:
J
JiabinYang 已提交
5167 5168
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5169
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5170 5171 5172 5173 5174 5175
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5176
                shape=[num_classes, 1],
J
JiabinYang 已提交
5177 5178 5179
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5180 5181
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5182
        inputs=inputs,
W
weixing02 已提交
5183 5184
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5185 5186
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5187 5188 5189
    return out


Y
fix ci.  
ying 已提交
5190
def transpose(x, perm, name=None):
Y
ying 已提交
5191 5192 5193 5194 5195 5196 5197
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5198 5199 5200
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5201 5202 5203 5204 5205 5206 5207

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5208
            # use append_batch_size=False to avoid prepending extra
5209
            # batch size in shape
5210
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5211
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5212
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5213 5214
    """

Y
fix ci.  
ying 已提交
5215
    if len(perm) != len(x.shape):
Y
ying 已提交
5216 5217 5218
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5219 5220 5221 5222 5223 5224
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5225 5226

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5227 5228
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5229
    helper.append_op(
5230
        type='transpose2',
Y
fix ci.  
ying 已提交
5231
        inputs={'X': [x]},
5232 5233
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5234 5235
        attrs={'axis': perm})
    return out
5236 5237


5238 5239 5240 5241 5242 5243 5244
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5245
    """
5246 5247 5248 5249 5250 5251 5252
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5281 5282 5283 5284 5285 5286 5287 5288 5289
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5290 5291 5292
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5293 5294 5295 5296 5297
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5325 5326 5327
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5340
            output.dims = {8, 8}
5341

5342
            output.lod = [[4, 4]]
5343

T
Tink_Y 已提交
5344
    Examples:
5345 5346 5347

        .. code-block:: python

5348 5349
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5350 5351

    """
W
wanghaoshuang 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5362 5363 5364 5365 5366 5367 5368
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5369
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5370
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5371
    helper.append_op(
5372
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5373
    return out
5374 5375


Y
yuyang18 已提交
5376
@templatedoc()
5377
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5378 5379
    """
    ${comment}
5380 5381

    Args:
Y
yuyang18 已提交
5382
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5383 5384
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5385 5386 5387 5388 5389
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5390
        ${out_comment}.
5391 5392

    Examples:
Y
yuyang18 已提交
5393 5394 5395 5396
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5397 5398 5399 5400 5401 5402
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5403
    out = helper.create_variable_for_type_inference(dtype)
5404 5405 5406 5407 5408
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5409
    return helper.append_activation(out)
5410 5411


Y
yuyang18 已提交
5412
@templatedoc()
5413 5414
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5415 5416 5417 5418 5419 5420 5421
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5422 5423

    Args:
Y
yuyang18 已提交
5424 5425
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5426 5427

    Returns:
Y
yuyang18 已提交
5428
        ${out_comment}.
5429 5430
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5431 5432 5433 5434 5435

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5436
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5437 5438 5439 5440 5441 5442
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5443 5444


5445 5446 5447
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5448
                               ignore_index=kIgnoreIndex,
5449 5450
                               numeric_stable_mode=False,
                               return_softmax=False):
5451 5452
    """
    **Softmax With Cross Entropy Operator.**
5453

5454 5455 5456 5457
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5458

5459 5460 5461
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5462

5463 5464 5465
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5466

5467
    The equation is as follows:
5468

5469
    1) Hard label (one-hot label, so every sample has exactly one class)
5470

5471 5472 5473 5474
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5475

5476 5477 5478
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5479

5480 5481 5482 5483
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5484 5485 5486
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5487

S
sneaxiy 已提交
5488 5489 5490 5491 5492 5493 5494 5495
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5496 5497 5498 5499 5500 5501 5502 5503
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5504 5505
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5506
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5507 5508 5509
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5510 5511 5512
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5513
                                    stable algorithm. Default: False
5514
        return_softmax (bool): A flag indicating whether to return the softmax
5515
                               along with the cross entropy loss. Default: False
5516

5517
    Returns:
5518 5519 5520 5521
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5522
                              2-D tensor with shape [N x K].
5523 5524 5525 5526 5527 5528 5529

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5530 5531
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5532 5533
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5534 5535
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5536 5537 5538 5539 5540 5541
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5542 5543 5544 5545 5546
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5547 5548 5549 5550

    if return_softmax:
        return loss, softmax

5551 5552 5553 5554 5555
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5556 5557
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5558
    For each instance, it computes the smooth L1 loss element by element first
5559
    and then sums all the losses. So the shape of ouput Variable is
5560
    [batch_size, 1].
5561

5562 5563
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5564
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5565
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5566
            L1 loss op with same shape as :attr:`x`.
5567
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5568 5569
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5570
            by this tensor element by element.
5571
        outside_weight (Variable|None): A tensor with rank at least 2. This
5572 5573
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5574
            element by element.
5575
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5576 5577
           scalar with default value 1.0.

5578
    Returns:
5579
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5580 5581 5582 5583 5584

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5585 5586
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5587
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5588
            out = fluid.layers.smooth_l1(x=fc, y=label)
5589
    """
5590

5591
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5592 5593
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5606 5607 5608 5609


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5610
    This layer creates the one-hot representations for input indices.
5611 5612

    Args:
Y
Yibing Liu 已提交
5613 5614
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5615 5616

    Returns:
Y
Yibing Liu 已提交
5617
        Variable: The one-hot representations of input.
5618 5619

    Examples:
C
caoying03 已提交
5620
        .. code-block:: python
5621

Y
Yibing Liu 已提交
5622 5623
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5624 5625
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5626
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5627 5628 5629 5630 5631 5632
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5633 5634


Y
Yu Yang 已提交
5635
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5636
    """
Y
yi.wu 已提交
5637 5638 5639
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5640 5641 5642 5643 5644 5645

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5646 5647
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5648 5649 5650 5651 5652 5653

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5654 5655
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5656 5657
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5658 5659 5660 5661 5662
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5663
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5664
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5665 5666
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5667 5668
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5669 5670 5671
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5672 5673


5674
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5675
    """
C
caoying03 已提交
5676 5677
    Gives a new shape to the input Tensor without changing its data.

5678 5679 5680 5681 5682
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5683

5684
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5685

5686 5687 5688 5689
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5690
    2. 0 means the actual dimension value is going to be copied from the
5691 5692 5693 5694
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5695 5696

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5697
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5698
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5699

5700
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5701 5702
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5703 5704
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5705
    dimensions.
C
caoying03 已提交
5706

5707
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5708 5709 5710 5711
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5712 5713

    Args:
5714
        x(variable): The input tensor.
C
caoying03 已提交
5715 5716
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5717 5718 5719 5720 5721
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5722 5723
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5724 5725 5726 5727 5728 5729 5730
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5731
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5732

5733
    Returns:
G
guosheng 已提交
5734 5735 5736 5737
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5738

X
Xin Pan 已提交
5739 5740 5741
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5742 5743
    Examples:
        .. code-block:: python
G
guosheng 已提交
5744

5745
            data = fluid.layers.data(
5746
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5747
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5748
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5749 5750 5751
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5752
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5753 5754 5755 5756 5757
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5758

5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5774
    helper = LayerHelper("reshape2", **locals())
5775 5776
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5777
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5778
    helper.append_op(
5779
        type="reshape2",
X
Xin Pan 已提交
5780
        inputs=inputs,
D
dzhwinter 已提交
5781
        attrs={"shape": shape},
5782 5783
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5784

D
dzhwinter 已提交
5785
    return helper.append_activation(out)
5786

5787

5788
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5789
    """
M
minqiyang 已提交
5790 5791 5792
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5793
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5794

Y
Yibing Liu 已提交
5795 5796
    Examples:
    Case 1:
M
minqiyang 已提交
5797
      Given
Y
Yibing Liu 已提交
5798 5799 5800 5801 5802 5803 5804 5805
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5806
        and
Y
Yibing Liu 已提交
5807 5808 5809
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5810

Y
Yibing Liu 已提交
5811
    Args:
5812
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5813
        axes (list): List of integers, indicating the dimensions to be squeezed.
5814
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5815 5816 5817 5818 5819 5820 5821 5822

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5823
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5824 5825
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5826 5827
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5828
    helper.append_op(
5829
        type="squeeze2",
5830
        inputs={"X": input},
Y
Yibing Liu 已提交
5831
        attrs={"axes": axes},
5832 5833
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5834

5835 5836 5837
    return out


5838
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5839
    """
M
minqiyang 已提交
5840 5841 5842
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5843

M
minqiyang 已提交
5844 5845
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5846
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5847

Y
Yibing Liu 已提交
5848
    Args:
5849
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5850
        axes (list): List of integers, indicating the dimensions to be inserted.
5851
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5852 5853 5854 5855 5856 5857 5858 5859

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5860
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5861 5862
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5863 5864
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5865
    helper.append_op(
5866
        type="unsqueeze2",
5867
        inputs={"X": input},
Y
Yibing Liu 已提交
5868
        attrs={"axes": axes},
5869 5870
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5871

5872 5873
    return out

5874

Y
yangyaming 已提交
5875
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5876
    """
Y
Yibing Liu 已提交
5877
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5878 5879 5880 5881
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5882
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5883 5884 5885 5886 5887 5888

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5889
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5890 5891 5892
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5893
            target_lod: [4, 2]
Y
yangyaming 已提交
5894 5895

            then we get a 1-level LoDTensor:
5896
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5897 5898 5899 5900 5901 5902
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5903
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5904 5905 5906 5907
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5908
                y.data = [[2, 4]]
Y
yangyaming 已提交
5909 5910 5911
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5912
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5913 5914 5915 5916 5917 5918
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5919
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5920 5921 5922 5923
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5924
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5925 5926 5927 5928
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5929
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5930 5931 5932 5933 5934
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5935
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5936
                           from :attr:`y`.
Y
yangyaming 已提交
5937
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5938
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5939 5940

    Returns:
Y
Yibing Liu 已提交
5941
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5942 5943

    Raises:
Y
Yibing Liu 已提交
5944
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5945 5946 5947 5948 5949 5950 5951 5952 5953

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5954
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5980
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6009 6010
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6023 6024 6025
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6039 6040 6041 6042


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6043
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6044
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6045

G
guosheng 已提交
6046 6047 6048 6049
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6072
                         The length of :attr:paddings must be
G
guosheng 已提交
6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6083

G
guosheng 已提交
6084 6085 6086 6087 6088 6089
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6090
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6091 6092 6093 6094 6095 6096 6097
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6098 6099


C
chengduo 已提交
6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6131 6132
		And
            pad_value = -1,
C
chengduo 已提交
6133

T
Tink_Y 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6169
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6170 6171 6172 6173 6174 6175 6176 6177 6178
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6179 6180 6181 6182 6183 6184 6185
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6186 6187
    called label-smoothing regularization (LSR).

6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6211
                              be :math:`(1, class\_num)`.
6212 6213
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6214
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6234
    smooth_label = helper.create_variable_for_type_inference(dtype)
6235 6236 6237 6238 6239 6240 6241
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6242 6243


W
wopeizl 已提交
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6280 6281


J
jerrywgz 已提交
6282 6283 6284 6285 6286 6287
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6288 6289
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6306 6307 6308
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6309 6310 6311 6312 6313 6314
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6315
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6356 6357
        .. code-block:: python

W
whs 已提交
6358 6359 6360 6361
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6362
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6363 6364 6365 6366 6367 6368
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6369 6370


6371 6372 6373 6374
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6375 6376
                 resample='BILINEAR',
                 actual_shape=None):
6377
    """
Q
qiaolongfei 已提交
6378
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6379

6380
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6381 6382 6383
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6384

6385
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6386

6387
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6388

6389
    Args:
6390
        input (Variable): The input tensor of image resize layer,
6391 6392
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6393
        out_shape(list|tuple|Variable|None): Output shape of image resize
6394 6395
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6396
        scale(float|None): The multiplier for the input height or width.
6397 6398 6399
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6400 6401
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6402
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6403
                       currently.
6404
                       Default: 'BILINEAR'
6405 6406 6407
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6408
                                :attr:`out_shape` and :attr:`scale` specifying
6409 6410 6411 6412 6413 6414 6415
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6416 6417
                                constructing stage.
                                Default: None
6418 6419

    Returns:
Q
update  
qiaolongfei 已提交
6420 6421
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6422

6423 6424 6425
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6426
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6427 6428 6429 6430
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6431 6432 6433
    Examples:
        .. code-block:: python

6434
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6435
    """
6436 6437 6438 6439
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6440 6441
    if resample not in resample_methods:
        raise ValueError(
6442
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6443
        )
6444
    resample_type = resample_methods[resample]
6445
    if out_shape is None and scale is None:
6446
        raise ValueError("One of out_shape and scale must not be None.")
6447
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6448
    dtype = helper.input_dtype()
6449 6450 6451 6452

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6453 6454 6455
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6456
    if out_shape is not None:
6457 6458 6459 6460
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6461
            inputs['OutSize'] = out_shape
6462 6463 6464 6465 6466 6467 6468 6469
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6470 6471 6472 6473
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6474 6475 6476 6477 6478
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6479
    out = helper.create_variable_for_type_inference(dtype)
6480
    helper.append_op(
6481
        type='{}_interp'.format(resample_type),
6482
        inputs=inputs,
6483
        outputs={"Out": out},
6484 6485 6486
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6487
    return out
F
stash  
fengjiayi 已提交
6488 6489


6490
@templatedoc(op_type="bilinear_interp")
6491 6492 6493 6494 6495
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6496
    """
6497 6498
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6499 6500
    in priority order.

6501 6502 6503 6504
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6505 6506
    again in the other direction.

6507
    For details of bilinear interpolation, please refer to Wikipedia:
6508
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6509 6510 6511 6512 6513

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6514

Y
yuyang18 已提交
6515 6516 6517 6518 6519
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6520 6521 6522
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6523
                                :attr:`out_shape` and :attr:`scale` specifying
6524 6525 6526 6527 6528 6529 6530
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6531 6532
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6533 6534 6535

    Returns:
        ${out_comment}.
6536 6537 6538 6539 6540

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6541 6542
    """

6543
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6544 6545


6546
@templatedoc(op_type="nearest_interp")
6547 6548 6549 6550 6551
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6552
    """
6553
    Resize input by performing nearest neighbor interpolation in both the
6554 6555
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6556 6557
    out_shape and scale in priority order.

6558
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6559
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6560 6561 6562 6563 6564

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6565

Y
yuyang18 已提交
6566 6567 6568 6569 6570
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6571 6572 6573
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6574
                                :attr:`out_shape` and :attr:`scale` specifying
6575 6576 6577 6578 6579 6580 6581
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6582 6583
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6584 6585 6586

    Returns:
        ${out_comment}.
6587 6588 6589 6590 6591

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6592 6593
    """

6594
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6595 6596 6597 6598


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6599 6600 6601
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6602 6603 6604 6605 6606 6607 6608
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6609
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6610

6611
    Returns:
Q
update  
qiaolongfei 已提交
6612
        Variable: The output is a 4-D tensor of the shape
6613
        (num_batches, channls, out_h, out_w).
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6624 6625 6626
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6627 6628 6629
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6630 6631
def gather(input, index):
    """
Q
qiaolongfei 已提交
6632 6633
    **Gather Layer**

6634
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6635 6636 6637 6638
    of X indexed by `index` and concatenate them together.

    .. math::

6639
        Out = X[Index]
W
whs 已提交
6640 6641 6642 6643 6644 6645 6646


    .. code-block:: text


                Given:

6647 6648
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6659
        input (Variable): The source input with rank>=1.
W
whs 已提交
6660 6661 6662 6663 6664 6665
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6666

W
whs 已提交
6667 6668 6669 6670 6671 6672
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6673
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6674 6675 6676 6677 6678 6679 6680 6681
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6713
    out = helper.create_variable_for_type_inference(dtype)
6714 6715 6716 6717 6718 6719 6720 6721 6722
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6773
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6774 6775 6776 6777 6778 6779 6780 6781 6782
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6796

6797 6798 6799
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6800
    """
F
stash  
fengjiayi 已提交
6801
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6802
    dtype = x.dtype
X
Xin Pan 已提交
6803
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6804
    if seed is None:
6805
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6806
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6807
    if isinstance(seed, int):
F
fengjiayi 已提交
6808 6809 6810 6811 6812
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6813 6814 6815 6816
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6817
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6818 6819
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6820 6821
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6822
    return out
W
whs 已提交
6823 6824


6825
def log(x, name=None):
W
wanghaoshuang 已提交
6826 6827 6828 6829 6830
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6831
        Out = \\ln(x)
W
wanghaoshuang 已提交
6832 6833

    Args:
6834
        x (Variable): Input tensor.
6835 6836
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6837 6838 6839 6840 6841 6842 6843 6844

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6845
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6846 6847
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6848
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6849
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6850
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6851 6852 6853
    return out


6854
def relu(x, name=None):
W
wanghaoshuang 已提交
6855 6856
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6857
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6858 6859 6860 6861
    the tensor elementwise.

    .. math::

6862
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6863 6864

    Args:
6865
        x (Variable): The input tensor.
6866 6867
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6868 6869 6870 6871 6872 6873 6874 6875

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6876
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6877 6878
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6879
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6880
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6881 6882
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6883
    return out
6884 6885


C
chengduo 已提交
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6927 6928 6929
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6930 6931 6932 6933
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6934
    .. math::
6935 6936

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6937

6938
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6939 6940 6941 6942 6943
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6944
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6945
                           Its shape should be the same as input.
6946
        num_classes (int): The possible number of labels.
W
whs 已提交
6947 6948 6949 6950

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6951
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6952 6953 6954 6955

    Examples:

        .. code-block:: python
6956

W
whs 已提交
6957 6958 6959 6960
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6961 6962 6963
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6964 6965
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6966 6967
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6968
        outputs={
W
whs 已提交
6969 6970 6971
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6972 6973 6974
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7043
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7044 7045 7046 7047 7048

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7049
            isinstance(shape, Variable)):
7050 7051 7052 7053 7054
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7055
    out = helper.create_variable_for_type_inference(x.dtype)
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7073 7074


W
whs 已提交
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7092

W
whs 已提交
7093
              out_shape = [2, 3, 5, 5]
7094

W
whs 已提交
7095
          Step 1:
7096

W
whs 已提交
7097 7098 7099
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7100

W
whs 已提交
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7171
            isinstance(out_shape, Variable)):
W
whs 已提交
7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7193 7194 7195 7196 7197 7198 7199 7200
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7201

7202 7203
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7204

7205 7206 7207 7208
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7209

7210 7211 7212 7213 7214
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7215 7216 7217

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7253
    out = helper.create_variable_for_type_inference("float32")
7254 7255 7256 7257 7258 7259 7260 7261

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7262 7263


M
minqiyang 已提交
7264 7265
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7266
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7267
    which compares left score and right score passed in.
M
minqiyang 已提交
7268
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7269 7270 7271 7272 7273 7274

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7275
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7276 7277
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7278
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7279 7280 7281
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7282
       Variable: The ranking loss.
M
minqiyang 已提交
7283
    Raises:
M
minqiyang 已提交
7284
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7285 7286 7287 7288 7289 7290 7291
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7292
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7293 7294 7295 7296 7297 7298
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7299 7300
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7324
        .. code-block:: text
W
whs 已提交
7325

T
Tink_Y 已提交
7326
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7327

T
Tink_Y 已提交
7328 7329
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7330

T
Tink_Y 已提交
7331
	      Case 0:
M
minqiyang 已提交
7332

T
Tink_Y 已提交
7333 7334 7335
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7336

T
Tink_Y 已提交
7337 7338 7339
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7340

T
Tink_Y 已提交
7341
	      Case 1:
M
minqiyang 已提交
7342

T
Tink_Y 已提交
7343 7344
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7345

T
Tink_Y 已提交
7346 7347 7348
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7349

T
Tink_Y 已提交
7350
	      Case 2:
M
minqiyang 已提交
7351

T
Tink_Y 已提交
7352 7353
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7354

T
Tink_Y 已提交
7355 7356 7357
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7358 7359


W
whs 已提交
7360 7361
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7362
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7386
    out = helper.create_variable_for_type_inference(dtype)
7387 7388 7389 7390 7391 7392 7393 7394 7395
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7396
    helper.append_op(
7397
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7398 7399 7400 7401

    return out


7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7414 7415 7416 7417 7418

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7419 7420
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7421 7422
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7423
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7444 7445 7446 7447 7448

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7449 7450
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7451 7452
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7453
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7474 7475 7476 7477 7478

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7479 7480
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7481 7482
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7483
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7505 7506 7507 7508 7509

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7510
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7511
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7512 7513
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7514
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7537 7538 7539 7540 7541

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7542 7543
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7544 7545
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7546
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7568 7569 7570 7571 7572

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7573 7574
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7575 7576
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7577
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7578 7579 7580 7581 7582 7583 7584 7585
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7586 7587 7588 7589
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7590
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7591 7592 7593

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7594
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7595
          weight (alpha).
J
jerrywgz 已提交
7596
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7597 7598 7599
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7600
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7601
          will be named automatically.
J
jerrywgz 已提交
7602 7603 7604 7605 7606 7607 7608 7609

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7610
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7624
        attr=helper.param_attr,
J
jerrywgz 已提交
7625 7626 7627 7628
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7629
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7630 7631 7632 7633 7634 7635 7636 7637 7638
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7649
    Returns:
7650
        output(${out_type}): ${out_comment}
7651 7652 7653 7654 7655 7656 7657

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7658 7659
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7660
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7679
    Returns:
7680
        output(${out_type}): ${out_comment}
7681 7682 7683 7684 7685 7686 7687

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7688 7689
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7690
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7708
    Returns:
7709
        output(${out_type}): ${out_comment}
7710 7711 7712 7713 7714 7715 7716

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7717 7718
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7719
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7720 7721 7722 7723 7724 7725 7726 7727
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7741

7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7752 7753
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7769
        ValueError: If axis is not in range [0, rank(x)].
7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7786 7787
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7788
    helper.append_op(
7789
        type='flatten2',
7790
        inputs={"X": x},
7791 7792
        outputs={'Out': out,
                 'XShape': x_shape},
7793 7794
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7795 7796


C
chenweihang 已提交
7797
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7798
    """
C
chenweihang 已提交
7799
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7800
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7801 7802
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7803

C
chenweihang 已提交
7804 7805 7806 7807
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7808
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7809 7810 7811 7812 7813 7814
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7815
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7816 7817 7818
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7819 7820 7821
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7833 7834
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7835 7836 7837 7838 7839 7840
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7841
    return out
7842

7843

S
sneaxiy 已提交
7844 7845 7846 7847 7848 7849 7850 7851 7852
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7853

S
sneaxiy 已提交
7854
    .. math::
7855

S
sneaxiy 已提交
7856 7857 7858
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7859
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7860 7861 7862 7863
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7864 7865 7866
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7867 7868
    Returns:
        Variable: The output sequence mask.
7869

S
sneaxiy 已提交
7870 7871
    """

Q
qingqing01 已提交
7872
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7873
    if name is None:
X
Xin Pan 已提交
7874
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7875
    else:
X
Xin Pan 已提交
7876
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7877

Q
qingqing01 已提交
7878 7879 7880
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7881 7882
        outputs={'Y': out},
        attrs={
7883
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7884 7885 7886
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7887 7888


X
Xin Pan 已提交
7889
def stack(x, axis=0):
S
sneaxiy 已提交
7890 7891 7892 7893
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7894 7895 7896 7897 7898 7899 7900

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7901
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7902
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7903 7904

    Args:
7905
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7906
        axis (int|None): The axis along which all inputs are stacked.
7907

S
sneaxiy 已提交
7908 7909
    Returns:
        Variable: The stacked variable.
7910

S
sneaxiy 已提交
7911 7912
    """

X
Xin Pan 已提交
7913 7914 7915 7916 7917 7918
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7919
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7920
    helper.append_op(
S
sneaxiy 已提交
7921 7922
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7923

X
Xin Pan 已提交
7924
    return out
D
dzhwinter 已提交
7925 7926 7927 7928 7929 7930 7931


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7932

D
dzhwinter 已提交
7933 7934 7935
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7936
    raised.
D
dzhwinter 已提交
7937 7938

    Args:
M
minqiyang 已提交
7939
        x (Variable): Input variable.
D
dzhwinter 已提交
7940 7941
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7942

D
dzhwinter 已提交
7943 7944
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7945

D
dzhwinter 已提交
7946 7947 7948 7949 7950 7951 7952 7953 7954 7955
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
7956
    for _ in range(num):
X
Xin Pan 已提交
7957
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7958 7959 7960 7961 7962 7963 7964 7965

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7978

W
whs 已提交
7979 7980 7981 7982
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7983

W
whs 已提交
7984
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7985

W
whs 已提交
7986
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7987

W
whs 已提交
7988 7989 7990 7991
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7992

W
whs 已提交
7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8009
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8010 8011 8012 8013 8014 8015
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8016 8017


G
fix  
gongweibao 已提交
8018 8019 8020
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8021
@templatedoc()
G
fix  
gongweibao 已提交
8022 8023 8024 8025 8026 8027 8028 8029 8030
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8031
    ${comment}
G
fix  
gongweibao 已提交
8032 8033

    Args:
G
gongweibao 已提交
8034 8035 8036
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8037
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8038 8039 8040
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8041 8042
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8043
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8044

8045 8046 8047 8048 8049
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8050 8051 8052
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8053
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8070 8071


G
gongweibao 已提交
8072
@templatedoc()
X
Xin Pan 已提交
8073
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8074
    """
G
gongweibao 已提交
8075
    ${comment}
G
fix  
gongweibao 已提交
8076 8077

    Args:
G
gongweibao 已提交
8078 8079 8080 8081
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8082 8083 8084
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8085
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8086

8087 8088 8089 8090
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8091 8092 8093
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8094
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8095 8096 8097 8098 8099 8100 8101 8102 8103 8104
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8105
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8106 8107 8108 8109 8110
        })

    return out


G
gongweibao 已提交
8111
@templatedoc()
G
fix  
gongweibao 已提交
8112
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8113
    """
G
gongweibao 已提交
8114
    ${comment}
G
fix  
gongweibao 已提交
8115 8116

    Args:
G
gongweibao 已提交
8117 8118 8119 8120
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8121
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8122 8123

    Returns:
G
gongweibao 已提交
8124
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8125

8126 8127 8128 8129 8130 8131 8132 8133 8134 8135
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8136 8137 8138
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8139
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8151
@templatedoc()
G
fix  
gongweibao 已提交
8152 8153 8154 8155 8156 8157 8158 8159 8160
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8161
    ${comment}
G
fix  
gongweibao 已提交
8162 8163

    Args:
G
gongweibao 已提交
8164 8165
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8166
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8167 8168 8169 8170
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8171
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8172 8173

    Returns:
G
gongweibao 已提交
8174
        out (Variable): ${out_comment}
8175 8176 8177 8178 8179 8180 8181 8182

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8183 8184 8185
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8186
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8205
@templatedoc()
X
Xin Pan 已提交
8206
def sum(x):
G
fix  
gongweibao 已提交
8207
    """
G
gongweibao 已提交
8208
    ${comment}
G
fix  
gongweibao 已提交
8209 8210

    Args:
G
gongweibao 已提交
8211
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8212 8213

    Returns:
G
gongweibao 已提交
8214
        out (Variable): ${out_comment}
8215 8216 8217 8218 8219 8220

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8221 8222 8223
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8224 8225
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8226 8227 8228 8229
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8230
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8231 8232 8233 8234

    return out


G
gongweibao 已提交
8235
@templatedoc()
G
fix  
gongweibao 已提交
8236 8237
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8238
    ${comment}
G
fix  
gongweibao 已提交
8239 8240

    Args:
G
gongweibao 已提交
8241 8242 8243 8244
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8245 8246

    Returns:
G
gongweibao 已提交
8247
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8248

8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8260 8261 8262
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8263 8264
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8276
@templatedoc()
G
fix  
gongweibao 已提交
8277 8278
def shape(input):
    """
G
gongweibao 已提交
8279
    ${comment}
G
fix  
gongweibao 已提交
8280 8281

    Args:
G
gongweibao 已提交
8282
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8283 8284

    Returns:
G
gongweibao 已提交
8285
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8286

8287 8288 8289 8290 8291 8292
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8293 8294 8295
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8296 8297
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8298
    helper.append_op(
G
fix  
gongweibao 已提交
8299
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8300 8301

    return out
G
merge  
gongweibao 已提交
8302 8303


S
sneaxiy 已提交
8304 8305 8306 8307 8308 8309 8310 8311
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8312 8313
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8314
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8315 8316 8317
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8318

S
sneaxiy 已提交
8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8330
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8331 8332 8333 8334 8335 8336 8337 8338
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8339
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8340
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8341 8342 8343 8344 8345 8346

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8347
    if name is None:
X
Xin Pan 已提交
8348
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8349 8350 8351
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8352 8353 8354 8355 8356 8357 8358 8359 8360 8361

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8362
    return helper.append_activation(out)
S
sneaxiy 已提交
8363 8364


X
Xin Pan 已提交
8365
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8366 8367 8368
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8369
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8370 8371 8372
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8373
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8374 8375 8376
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8377
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8378 8379 8380
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8381
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8382 8383 8384
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8385
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8386 8387 8388
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8389
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8401 8402
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8403
        ])
M
minqiyang 已提交
8404 8405


8406
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8407 8408
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8409 8410
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8411 8412 8413

    if out is None:
        if name is None:
X
Xin Pan 已提交
8414
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8430
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8442 8443 8444 8445 8446 8447 8448 8449 8450

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8451 8452 8453 8454 8455 8456 8457
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8458
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8470 8471 8472 8473 8474 8475 8476 8477 8478

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8479 8480 8481 8482 8483 8484 8485
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8486
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8498 8499 8500 8501 8502 8503 8504 8505 8506

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8507 8508 8509 8510 8511 8512 8513
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8514
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8525 8526 8527 8528 8529 8530 8531

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8532 8533 8534 8535
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8551 8552 8553 8554 8555 8556 8557

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8558 8559 8560 8561 8562
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8563 8564 8565 8566
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8590 8591 8592 8593 8594 8595 8596

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8597 8598 8599 8600 8601
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8602 8603 8604 8605
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8606 8607 8608 8609 8610 8611 8612 8613

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8632
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8633 8634 8635 8636 8637 8638 8639 8640 8641 8642
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8685
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8686 8687 8688 8689 8690 8691 8692 8693 8694
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8695 8696
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8697 8698 8699 8700 8701 8702
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8703 8704 8705 8706
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8707 8708 8709 8710 8711 8712
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8713
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8714 8715 8716 8717 8718 8719 8720 8721 8722
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8723
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8724 8725 8726 8727 8728 8729 8730 8731
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8732
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8753
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8764 8765


J
JiabinYang 已提交
8766
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8767
    """
J
JiabinYang 已提交
8768
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8769 8770 8771

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8772
    The attr blocksize indicates the input block size.
8773 8774

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8775
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8776 8777

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8778
    (but keeping all data)
J
JiabinYang 已提交
8779

J
JiabinYang 已提交
8780
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8781
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8782 8783 8784 8785 8786
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8787
    Args:
J
JiabinYang 已提交
8788
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8789
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8790 8791

    Returns:
J
JiabinYang 已提交
8792
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8793 8794

    Raises:
J
JiabinYang 已提交
8795
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8796 8797 8798 8799 8800 8801

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8802
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8803
                x=data, blocksize=2)
J
JiabinYang 已提交
8804 8805
    """

J
JiabinYang 已提交
8806
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8807

J
JiabinYang 已提交
8808 8809
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8810 8811

    if name is None:
J
JiabinYang 已提交
8812 8813
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8814 8815 8816 8817 8818
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8819
        type="space_to_depth",
J
JiabinYang 已提交
8820
        inputs={"X": x},
J
JiabinYang 已提交
8821
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8822
        outputs={"Out": out})
J
JiabinYang 已提交
8823 8824
    return out

J
JiabinYang 已提交
8825

S
sneaxiy 已提交
8826 8827
@templatedoc()
def sequence_reverse(x, name=None):
8828
    """
S
sneaxiy 已提交
8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8840
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8841 8842 8843 8844 8845 8846 8847 8848 8849 8850
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8851 8852


8853 8854 8855 8856 8857 8858
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8859

8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8879
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8892 8893


B
barrierye 已提交
8894
def similarity_focus(input, axis, indexes, name=None):
8895
    """
B
barrierye 已提交
8896
    SimilarityFocus Operator
B
barrierye 已提交
8897 8898

    Generate a similarity focus mask with the same shape of input using the following method:
8899 8900 8901
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8902
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8903 8904 8905 8906 8907 8908 8909
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8910
       each index.
B
barrierye 已提交
8911 8912 8913 8914
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8964
    Args:
8965
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8966
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8967
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8968
            1, 2 or 3.
B
barrierye 已提交
8969
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8970 8971

    Returns:
8972
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8973
            as the input.
8974

B
barrierye 已提交
8975 8976 8977
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8978 8979
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8992 8993 8994 8995 8996
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8997 8998 8999 9000 9001 9002 9003
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9004 9005


M
minqiyang 已提交
9006 9007
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9008 9009
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9010 9011
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9050
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9051
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9052 9053 9054 9055 9056 9057 9058 9059 9060

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9061 9062
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9063 9064
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9065 9066 9067 9068 9069 9070 9071
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9072 9073


D
dengkaipeng 已提交
9074
@templatedoc()
9075 9076
def grid_sampler(x, grid, name=None):
    """
9077
    This operation samples input X by using bilinear interpolation based on
9078
    flow field grid, which is usually gennerated by affine_grid. The grid of
9079 9080 9081 9082
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9083
    interpolation value of 4 nearest corner points.
9084 9085 9086 9087 9088 9089 9090 9091

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9092
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9122 9123

    Args:
9124 9125 9126
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9127 9128

    Returns:
9129
        out(Variable): Output of shape [N, C, H, W] data samples input X
9130 9131 9132 9133 9134 9135 9136 9137 9138
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9139 9140 9141 9142 9143 9144 9145 9146 9147
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9148
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9149 9150
    ipts = {'X': x, 'Grid': grid}

9151
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9152 9153 9154
    return out


G
gmcather 已提交
9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9249 9250 9251 9252 9253 9254 9255 9256 9257 9258


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9259
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9260

Q
Qiao Longfei 已提交
9261
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9262 9263 9264
    For example:

    .. math::
9265
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9266

Q
Qiao Longfei 已提交
9267
    In this formula:
9268 9269
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9270
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9271
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9272 9273 9274
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9275 9276
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9277 9278 9279
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9280
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9281
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9282
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9283 9284 9285 9286
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9287
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9288 9289 9290 9291

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9292
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9293 9294
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9295
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9296 9297 9298 9299

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9300
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
9341 9342


S
sneaxiy 已提交
9343
class PyFuncRegistry(object):
S
sneaxiy 已提交
9344 9345 9346
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
9347
        if func is None or not callable(func):
S
sneaxiy 已提交
9348 9349 9350
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
9351
        # find named args using reflection
S
sneaxiy 已提交
9352 9353 9354 9355 9356 9357 9358
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
9359 9360 9361
        '''
        Why record self here?

M
minqiyang 已提交
9362 9363
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
9364
           to find the registered function corresponding
M
minqiyang 已提交
9365
           to :code:`idx`.
S
sneaxiy 已提交
9366

M
minqiyang 已提交
9367 9368
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
9369
           whose reference count is 1 would cause
M
minqiyang 已提交
9370
           segmentation fault error in C++ side.
S
sneaxiy 已提交
9371 9372
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
9373
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
9388 9389 9390 9391 9392 9393 9394 9395 9396
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
9397

S
sneaxiy 已提交
9398 9399
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
9400 9401

        ret = []
S
sneaxiy 已提交
9402 9403 9404
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
9405 9406
                continue

S
sneaxiy 已提交
9407 9408
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
9409

S
sneaxiy 已提交
9410 9411 9412
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
9413

S
sneaxiy 已提交
9414
        return tuple(ret)
S
sneaxiy 已提交
9415 9416


S
sneaxiy 已提交
9417 9418 9419 9420
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
9421

S
sneaxiy 已提交
9422 9423 9424 9425 9426 9427 9428 9429
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
9430
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
9431

S
sneaxiy 已提交
9432 9433
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
9434 9435 9436 9437
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
9438
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
9439
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
9440 9441
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
9442 9443 9444 9445 9446
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
9447
            should create :code:`out` beforehand.
S
sneaxiy 已提交
9448
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
9449
                                       None means no backward. Default None.
S
sneaxiy 已提交
9450
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
9451
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
9452 9453
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
9454
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
9455 9456 9457

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
9458 9459

    Examples:
M
minqiyang 已提交
9460

S
sneaxiy 已提交
9461 9462 9463 9464 9465
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
9466
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
9467 9468
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
9469
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
9470 9471 9472
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
9473
        >>>
S
sneaxiy 已提交
9474 9475 9476 9477 9478
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
9479
        >>>     print(x)
S
sneaxiy 已提交
9480 9481 9482 9483 9484 9485
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
9486
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
9487 9488
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
9489 9490
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
9491 9492 9493 9494 9495 9496 9497 9498
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
9499
    """
S
sneaxiy 已提交
9500
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
9501 9502 9503
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
9504
        x = [x]
S
sneaxiy 已提交
9505 9506
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9507

S
sneaxiy 已提交
9508 9509 9510
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
9511
        out_list = [out]
S
sneaxiy 已提交
9512
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
9513
        out_list = out
S
sneaxiy 已提交
9514 9515 9516
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
9517

S
sneaxiy 已提交
9518 9519
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
9520
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
9521 9522

    for each_out in out_list:
S
sneaxiy 已提交
9523 9524
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
9525 9526
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
9527

S
sneaxiy 已提交
9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
9543 9544 9545 9546

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
9547 9548
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
9549 9550 9551
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
9552
        })
S
sneaxiy 已提交
9553
    return out
S
sneaxiy 已提交
9554 9555 9556


# For debug usage
S
sneaxiy 已提交
9557 9558 9559 9560
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
9613

M
minqiyang 已提交
9614

M
minqiyang 已提交
9615
def huber_loss(input, label, delta):
9616
    """
M
minqiyang 已提交
9617 9618 9619
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
9620 9621 9622 9623

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
9624
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
9625 9626 9627 9628

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
9629
        huber\_loss = 0.5 * (label - input) * (label - input)
9630 9631 9632 9633 9634 9635 9636


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
9637
        delta (float): The parameter of huber loss, which controls
9638 9639 9640
                       the range of outliers

    Returns:
M
minqiyang 已提交
9641
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
9642 9643 9644 9645 9646

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
9647
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
9648
    """
M
minqiyang 已提交
9649
    helper = LayerHelper('huber_loss', **locals())
9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
X
Xin Pan 已提交
9661 9662 9663 9664 9665 9666 9667 9668


class FC(layers.PyLayer):
    def __init__(self,
                 size,
                 param_attr=None,
                 num_flatten_dims=1,
                 dtype=core.VarDesc.VarType.FP32):
M
minqiyang 已提交
9669
        super(FC, self).__init__(param_attr=param_attr)
X
Xin Pan 已提交
9670 9671 9672
        self._size = size
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
M
minqiyang 已提交
9673 9674
        self._tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._out = self._helper.create_variable_for_type_inference(self._dtype)
X
Xin Pan 已提交
9675 9676

    def _build_once(self, inputs):
M
minqiyang 已提交
9677
        input_shape = inputs.shape
X
Xin Pan 已提交
9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
        ] + [self._size]
        self._w = self._helper.create_parameter(
            attr=self._helper.param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, inputs):
        self._helper.append_op(
            type="mul",
M
minqiyang 已提交
9690
            inputs={"X": inputs,
X
Xin Pan 已提交
9691
                    "Y": self._w},
M
minqiyang 已提交
9692
            outputs={"Out": self._tmp},
X
Xin Pan 已提交
9693 9694 9695 9696 9697 9698 9699
            attrs={
                "x_num_col_dims": self._num_flatten_dims,
                "y_num_col_dims": 1
            })

        self._helper.append_op(
            type="sum",
M
minqiyang 已提交
9700 9701
            inputs={"X": [self._tmp]},
            outputs={"Out": self._out},
X
Xin Pan 已提交
9702
            attrs={"use_mkldnn": False})
M
minqiyang 已提交
9703 9704

        return self._out