trainer.py 7.7 KB
Newer Older
Y
Yu Yang 已提交
1
import collections
Q
qiaolongfei 已提交
2 3
import gzip
import os
Y
Yu Yang 已提交
4

Y
Yu Yang 已提交
5 6
import py_paddle.swig_paddle as api

7
from data_feeder import DataFeeder
Q
qiaolongfei 已提交
8
from topology import Topology
Q
qiaolongfei 已提交
9
from . import event as v2_event
Y
Yu Yang 已提交
10 11 12
from . import optimizer as v2_optimizer
from . import parameters as v2_parameters

13
__all__ = ['SGD']
Y
Yu Yang 已提交
14 15 16 17
"""
Trainer package
TODO(yuyang18): Complete comments.
"""
Y
Yu Yang 已提交
18 19 20


def default_event_handler(event):
Y
Yu Yang 已提交
21 22 23 24 25 26 27
    """
    Default event handler. It will print some log and save mode.

    TODO(yuyang18): Complete it!
    :param event:
    :return:
    """
Y
Yu Yang 已提交
28 29 30
    pass


Y
Yu Yang 已提交
31 32 33 34 35 36 37 38 39 40 41
class SGD(object):
    """
    Simple SGD Trainer.
    TODO(yuyang18): Complete comments

    :param update_equation: The optimizer object.
    :type update_equation: paddle.v2.optimizer.Optimizer
    :param cost: Target cost that neural network should be optimized.
    :type cost: paddle.v2.config_base.Layer
    :param parameters: The parameters dictionary.
    :type parameters: paddle.v2.parameters.Parameters
D
dangqingqing 已提交
42 43 44
    :param extra_layers: Some layers in the neural network graph are not
                         in the path of cost layer.
    :type extra_layers: paddle.v2.config_base.Layer
Y
Yu Yang 已提交
45
    """
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50 51 52
    def __init__(self,
                 cost,
                 parameters,
                 update_equation,
                 extra_layers=None,
                 is_local=True):
53

Y
Yu Yang 已提交
54 55 56
        if not isinstance(parameters, v2_parameters.Parameters):
            raise TypeError('parameters should be parameters')

Y
Yu Yang 已提交
57
        if not isinstance(update_equation, v2_optimizer.Optimizer):
Y
Yu Yang 已提交
58 59
            raise TypeError("update equation parameter must be "
                            "paddle.v2.optimizer.Optimizer")
60
        topology = Topology(cost, extra_layers=extra_layers)
Y
Yu Yang 已提交
61
        self.__optimizer__ = update_equation
Y
Yu Yang 已提交
62 63
        self.__topology__ = topology
        self.__parameters__ = parameters
64
        self.__topology_in_proto__ = topology.proto()
Q
qiaolongfei 已提交
65 66 67 68 69 70 71 72 73 74 75
        self.__is_local__ = is_local

        self.__use_sparse_updater__ = self.__topology__.use_sparse_updater()
        # # In local mode, disable sparse_remote_update.
        if is_local:
            for param in self.__topology_in_proto__.parameters:
                if param.sparse_remote_update:
                    param.sparse_remote_update = False

        self.__gm_create_mode__ = api.CREATE_MODE_NORMAL if not \
            self.__use_sparse_updater__ else api.CREATE_MODE_SGD_SPARSE_CPU_TRAINING
Y
Yu Yang 已提交
76
        self.__data_types__ = topology.data_type()
Y
Yu Yang 已提交
77
        gm = api.GradientMachine.createFromConfigProto(
Q
qiaolongfei 已提交
78
            self.__topology_in_proto__, self.__gm_create_mode__,
Y
Yu Yang 已提交
79 80 81 82
            self.__optimizer__.enable_types())
        assert isinstance(gm, api.GradientMachine)
        self.__gradient_machine__ = gm
        self.__gradient_machine__.randParameters()
Q
qiaolongfei 已提交
83
        self.__parameters__.append_gradient_machine(gm)
Q
qiaolongfei 已提交
84 85
        self.__parameter_updater__ = None

Q
qiaolongfei 已提交
86
    def __use_remote_sparse_updater__(self):
Q
qiaolongfei 已提交
87
        return self.__use_sparse_updater__ and not self.__is_local__
Y
Yu Yang 已提交
88

Q
qiaolongfei 已提交
89 90 91 92 93 94 95 96 97 98 99 100
    def __prepare_parameter__(self, in_args):
        """
        prepare parameter before forward backward.
        1. When use remote sparse updater, parameters should be got
        from ps according to input arguments.
        :param in_args: input arguments of this batch.
        :return:
        """
        if self.__use_remote_sparse_updater__():
            self.__gradient_machine__.prefetch(in_args)
            self.__parameter_updater__.getParametersRemote()

Q
qiaolongfei 已提交
101
    def save_parameter_to_tar(self, f):
Q
qiaolongfei 已提交
102 103 104
        self.__parameter_updater__.catchUpWith()
        self.__parameter_updater__.apply()
        self.__parameter_updater__.getParametersRemote(True, True)
Q
qiaolongfei 已提交
105
        self.__parameters__.to_tar(f)
Q
qiaolongfei 已提交
106 107
        self.__parameter_updater__.restore()

Y
Yu Yang 已提交
108
    def train(self, reader, num_passes=1, event_handler=None, feeding=None):
Y
Yu Yang 已提交
109 110 111
        """
        Training method. Will train num_passes of input data.

Y
Yu Yang 已提交
112
        :param reader:
Y
Yu Yang 已提交
113 114 115 116
        :param num_passes: The total train passes.
        :param event_handler: Event handler. A method will be invoked when event
                              occurred.
        :type event_handler: (BaseEvent) => None
Y
Yu Yang 已提交
117 118
        :param feeding: Feeding is a map of neural network input name and array
                        index that reader returns.
Y
Yu Yang 已提交
119
        :type feeding: dict|list
Y
Yu Yang 已提交
120 121
        :return:
        """
Y
Yu Yang 已提交
122 123 124 125
        if event_handler is None:
            event_handler = default_event_handler
        __check_train_args__(**locals())

Q
qiaolongfei 已提交
126 127 128
        self.__parameter_updater__ = self.__optimizer__.create_updater(
            self.__is_local__, num_passes, self.__use_sparse_updater__)
        self.__parameter_updater__.init(self.__gradient_machine__)
Y
Yu Yang 已提交
129

Y
Yu Yang 已提交
130 131
        self.__gradient_machine__.start()
        batch_evaluator = self.__gradient_machine__.makeEvaluator()
Y
Yu Yang 已提交
132
        assert isinstance(batch_evaluator, api.Evaluator)
Y
Yu Yang 已提交
133
        pass_evaluator = self.__gradient_machine__.makeEvaluator()
Y
Yu Yang 已提交
134
        assert isinstance(pass_evaluator, api.Evaluator)
Y
Yu Yang 已提交
135
        out_args = api.Arguments.createArguments(0)
Y
Yu Yang 已提交
136
        feeder = DataFeeder(self.__data_types__, feeding)
Y
Yu Yang 已提交
137
        for pass_id in xrange(num_passes):
Y
Yu Yang 已提交
138 139
            event_handler(v2_event.BeginPass(pass_id))
            pass_evaluator.start()
Q
qiaolongfei 已提交
140
            self.__parameter_updater__.startPass()
Y
Yu Yang 已提交
141
            for batch_id, data_batch in enumerate(reader()):
Y
Yu Yang 已提交
142 143 144 145
                batch_evaluator.start()
                event_handler(
                    v2_event.BeginIteration(
                        pass_id=pass_id, batch_id=batch_id))
Q
qiaolongfei 已提交
146 147
                pass_type = self.__parameter_updater__.startBatch(
                    len(data_batch))
Q
qiaolongfei 已提交
148
                in_args = feeder(data_batch)
Q
qiaolongfei 已提交
149
                self.__prepare_parameter__(in_args)
Q
qiaolongfei 已提交
150 151
                self.__gradient_machine__.forwardBackward(in_args, out_args,
                                                          pass_type)
Y
Yu Yang 已提交
152 153
                self.__gradient_machine__.eval(pass_evaluator)
                self.__gradient_machine__.eval(batch_evaluator)
L
liaogang 已提交
154 155
                for each_param in self.__gradient_machine__.getNonStaticParameters(
                ):
Q
qiaolongfei 已提交
156
                    self.__parameter_updater__.update(each_param)
Y
Yu Yang 已提交
157
                cost_sum = out_args.sum()
Y
Yu Yang 已提交
158
                cost = cost_sum / len(data_batch)
Q
qiaolongfei 已提交
159
                self.__parameter_updater__.finishBatch(cost)
Y
Yu Yang 已提交
160
                batch_evaluator.finish()
Y
Yu Yang 已提交
161
                event_handler(
Y
Yu Yang 已提交
162
                    v2_event.EndIteration(
Y
Yu Yang 已提交
163 164 165 166
                        pass_id=pass_id,
                        batch_id=batch_id,
                        cost=cost,
                        evaluator=batch_evaluator))
Y
Yu Yang 已提交
167

Q
qiaolongfei 已提交
168
            self.__parameter_updater__.finishPass()
Y
Yu Yang 已提交
169 170
            pass_evaluator.finish()
            event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
Y
Yu Yang 已提交
171 172
        self.__gradient_machine__.finish()

Y
Yu Yang 已提交
173 174
    def test(self, reader, feeding=None):
        feeder = DataFeeder(self.__data_types__, feeding)
Y
Yu Yang 已提交
175 176 177
        evaluator = self.__gradient_machine__.makeEvaluator()
        out_args = api.Arguments.createArguments(0)
        evaluator.start()
Y
Yu Yang 已提交
178 179
        total_cost = 0
        num_samples = 0.0
Y
Yu Yang 已提交
180
        for data_batch in reader():
Y
Yu Yang 已提交
181
            num_samples += len(data_batch)
Q
qiaolongfei 已提交
182
            in_args = feeder(data_batch)
Q
qiaolongfei 已提交
183
            self.__prepare_parameter__(in_args)
Q
qiaolongfei 已提交
184
            self.__gradient_machine__.forward(in_args, out_args, api.PASS_TEST)
Y
Yu Yang 已提交
185
            total_cost += out_args.sum()
Y
Yu Yang 已提交
186
            self.__gradient_machine__.eval(evaluator)
Y
Yu Yang 已提交
187

Y
Yu Yang 已提交
188
        evaluator.finish()
Y
Yu Yang 已提交
189 190
        return v2_event.TestResult(
            evaluator=evaluator, cost=total_cost / num_samples)
Y
Yu Yang 已提交
191 192 193


def __check_train_args__(reader, event_handler, **kwargs):
Y
Yu Yang 已提交
194 195 196
    """
    Check train function's argument types
    """
Y
Yu Yang 已提交
197
    if not callable(reader) or not isinstance(reader(), collections.Iterator):
Y
Yu Yang 已提交
198 199
        raise TypeError('train_data_reader should be a function, '
                        'which can return a iterator')
Y
Yu Yang 已提交
200
    if not callable(event_handler):
Y
Yu Yang 已提交
201
        raise TypeError('event handler should be a function')