executor.cc 4.8 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Y
Yang Yang 已提交
16
#include <algorithm>
Y
Yang Yang 已提交
17
#include <iostream>
Q
qijun 已提交
18
#include <memory>
Y
Yang Yang 已提交
19
#include <set>
Y
Yang Yang 已提交
20
#include <vector>
Y
Yang Yang 已提交
21
#include "paddle/framework/lod_tensor.h"
Q
qijun 已提交
22
#include "paddle/framework/op_registry.h"
Q
qijun 已提交
23
#include "paddle/framework/scope.h"
Q
qijun 已提交
24

Y
Yang Yang 已提交
25 26
#include <boost/range/adaptor/reversed.hpp>

Q
qijun 已提交
27 28 29
namespace paddle {
namespace framework {

Q
qijun 已提交
30
Executor::Executor(const std::vector<platform::Place>& places) {
Q
qijun 已提交
31
  device_contexts_.resize(places.size());
Q
qijun 已提交
32
  for (size_t i = 0; i < places.size(); i++) {
Q
qijun 已提交
33
    if (platform::is_cpu_place(places[i])) {
Q
qijun 已提交
34 35 36
      device_contexts_[i] = new platform::CPUDeviceContext(
          boost::get<platform::CPUPlace>(places[i]));
    } else if (platform::is_gpu_place(places[i])) {
Q
qijun 已提交
37
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
38 39
      device_contexts_[i] = new platform::CUDADeviceContext(
          boost::get<platform::GPUPlace>(places[i]));
Q
qijun 已提交
40 41 42 43
#else
      PADDLE_THROW("'GPUPlace' is not supported in CPU only device.");
#endif
    }
Q
qijun 已提交
44 45 46
  }
}

Q
qijun 已提交
47 48 49 50 51 52 53 54
Executor::~Executor() {
  for (auto& device_context : device_contexts_) {
    if (device_context) {
      delete device_context;
    }
  }
}

Q
qijun 已提交
55
void Executor::Run(const ProgramDesc& pdesc, Scope* scope) {
Y
Yang Yang 已提交
56 57 58
  // TODO(tonyyang-svail):
  //    - only runs the first block
  //    - only runs on the first device
Y
Yang Yang 已提交
59
  //    - test on gpu
Y
Yang Yang 已提交
60
  auto& block = pdesc.blocks(0);
Y
Yang Yang 已提交
61
  auto& device = device_contexts_[0];
Y
Yang Yang 已提交
62

Y
Yang Yang 已提交
63 64 65
  // TODO(tonyyang-svail):
  //    - runs on a new local scope
  // Scope& local_scope = scope->NewScope();
Y
Yang Yang 已提交
66 67 68 69 70

  for (auto& var : block.vars()) {
    scope->NewVar(var.name());
  }

Y
Yang Yang 已提交
71 72 73 74 75 76 77 78 79
  std::vector<bool> should_run = Preprocess(pdesc);
  PADDLE_ENFORCE(should_run.size() == block.ops_size(),
                 "should_run.size() != block.ops_size()");
  for (int i = 0; i < should_run.size(); ++i) {
    if (should_run[i]) {
      auto op = paddle::framework::OpRegistry::CreateOp(block.ops(i));
      std::cout << op->DebugString() << std::endl;
      op->Run(*scope, *device);
    }
Y
Yang Yang 已提交
80 81
  }

Y
Yang Yang 已提交
82
  // // print tensor value
Y
Yang Yang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  // for (auto& var : block.vars()) {
  //   std::cout << var.name() << std::endl;
  //   auto v = scope->FindVar(var.name());
  //   const LoDTensor& t = v->Get<LoDTensor>();
  //   for (int i = 0; i < t.numel(); ++i) {
  //     std::cout << t.data<float>()[i] << " ";
  //   }
  //   std::cout << std::endl;
  // }
}

std::vector<bool> Executor::Preprocess(const ProgramDesc& pdesc) {
  // TODO(tonyyang-svail):
  //    - only runs the first block

  auto& block = pdesc.blocks(0);
  auto& ops = block.ops();

  bool expect_feed = true;
  for (auto& op_desc : ops) {
    PADDLE_ENFORCE(op_desc.type() != "feed" || expect_feed,
                   "All FeedOps are at the beginning of the ProgramDesc");
    expect_feed = (op_desc.type() == "feed");
  }

  bool expect_fetch = true;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;
    PADDLE_ENFORCE(op_desc.type() != "fetch" || expect_fetch,
                   "All FetchOps must at the end of the ProgramDesc");
    expect_fetch = (op_desc.type() == "fetch");
  }

  std::set<std::string> dependent_vars;
  std::vector<bool> should_run;
  for (auto op_iter = ops.rbegin(); op_iter != ops.rend(); ++op_iter) {
    auto& op_desc = *op_iter;

    bool found_dependent_vars = false;
    for (auto& var : op_desc.outputs()) {
      for (auto& argu : var.arguments()) {
        if (dependent_vars.count(argu) != 0) {
          found_dependent_vars = true;
        }
      }
    }

    // TODO(tonyyang-svail): add VLOG here for debugging
    if (op_desc.type() == "fetch" || found_dependent_vars) {
      // erase its output to the dependency graph
      for (auto& var : op_desc.outputs()) {
        for (auto& argu : var.arguments()) {
          dependent_vars.erase(argu);
        }
      }

      // insert its input to the dependency graph
      for (auto& var : op_desc.inputs()) {
        for (auto& argu : var.arguments()) {
          dependent_vars.insert(argu);
        }
      }

      // this op should be executed
      should_run.push_back(true);
    } else {
      // this op should NOT be executed
      should_run.push_back(false);
Q
qijun 已提交
151 152
    }
  }
Y
Yang Yang 已提交
153 154 155 156 157 158

  // since we are traversing the ProgramDesc in reverse order
  // we reverse the should_run vector
  std::reverse(should_run.begin(), should_run.end());

  return should_run;
Q
qijun 已提交
159 160 161 162
}

}  // namespace framework
}  // namespace paddle