lstm_cpu_kernel.h 20.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <type_traits>
17
#include "paddle/fluid/framework/eigen.h"
18
#include "paddle/phi/kernels/funcs/activation_functor.h"
F
Feiyu Chan 已提交
19 20
#include "paddle/phi/kernels/funcs/detail/activation_functions.h"
#include "paddle/phi/kernels/funcs/lstm_compute.h"
D
dangqingqing 已提交
21

P
peizhilin 已提交
22 23 24 25 26 27
#if defined(_WIN32)
#if defined(__AVX2__) || defined(__AVX__)
inline __m256 operator+=(__m256 a, __m256 b) { return _mm256_add_ps(a, b); }
#endif
#endif

F
Feiyu Chan 已提交
28 29
namespace phi {
namespace funcs {
D
dangqingqing 已提交
30 31
namespace detail {

32
using Array1 = Eigen::DSizes<int64_t, 1>;
F
Feiyu Chan 已提交
33 34
template <typename T,
          int MajorType = Eigen::RowMajor,
35
          typename IndexType = Eigen::DenseIndex>
F
Feiyu Chan 已提交
36
using EigenVector = paddle::framework::EigenVector<T, MajorType, IndexType>;
37

38
#if !defined(__NVCC__) && !defined(__HIPCC___)  // @{ Group LSTM CPU
D
dangqingqing 已提交
39 40

template <class T, class Op>
F
Feiyu Chan 已提交
41 42 43 44
void naive_lstm_forward_one_sequence(Op op,
                                     phi::funcs::LstmMetaValue<T> value,
                                     int frame_size,
                                     T cell_clip,
45
                                     ActivationType active_node,
46
                                     ActivationType active_gate,
47 48
                                     ActivationType active_state,
                                     bool old_api_version) {
49 50 51 52 53 54 55 56 57 58 59 60
  T r_value_in;
  T r_value_ig;
  T r_value_fg;
  T r_value_og;
  T r_checkI;
  T r_checkF;
  T r_checkO;
  T r_state;
  T r_prev_state = 0;
  T r_state_atv;
  T r_out;

61 62 63
  T *value_ig = value.gate_value;
  T *value_fg = value.gate_value + frame_size;
  T *value_in = value.gate_value + frame_size * 2;
64
  T *value_og = value.gate_value + frame_size * 3;
65 66 67 68 69
  if (old_api_version) {
    value_in = value.gate_value;
    value_ig = value.gate_value + frame_size;
    value_fg = value.gate_value + frame_size * 2;
  }
70 71 72 73 74 75 76 77 78 79 80 81

  for (int i = 0; i < frame_size; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    r_checkI = value.check_ig ? value.check_ig[i] : 0;
    r_checkF = value.check_fg ? value.check_fg[i] : 0;
    r_checkO = value.check_og ? value.check_og[i] : 0;

    if (value.prev_state_value) {
      r_prev_state = value.prev_state_value[i];
D
dangqingqing 已提交
82 83
    }

F
Feiyu Chan 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    op(&r_value_in,
       &r_value_ig,
       &r_value_fg,
       &r_value_og,
       &r_prev_state,
       &r_state,
       &r_state_atv,
       &r_out,
       &r_checkI,
       &r_checkF,
       &r_checkO,
       &cell_clip,
       active_node,
       active_gate,
       active_state);
99 100 101 102 103 104 105 106

    value_in[i] = r_value_in;
    value_ig[i] = r_value_ig;
    value_fg[i] = r_value_fg;
    value_og[i] = r_value_og;
    value.state_value[i] = r_state;
    value.state_active_value[i] = r_state_atv;
    value.output_value[i] = r_out;
D
dangqingqing 已提交
107 108 109 110
  }
}

template <class T, class Op>
F
Feiyu Chan 已提交
111 112 113 114 115 116
void naive_lstm_backward_one_sequence(Op op,
                                      phi::funcs::LstmMetaValue<T> value,
                                      phi::funcs::LstmMetaGrad<T> grad,
                                      int frame_size,
                                      T cell_clip,
                                      ActivationType active_node,
117
                                      ActivationType active_gate,
118 119
                                      ActivationType active_state,
                                      bool old_api_version) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  T r_value_in;
  T r_value_ig;
  T r_value_fg;
  T r_value_og;
  T r_grad_in;
  T r_grad_ig;
  T r_grad_fg;
  T r_grad_og;
  T r_prev_state = 0;
  T r_prev_state_grad;
  T r_state;
  T r_state_grad;
  T r_state_atv;
  T r_output_grad;
  T r_checkI;
  T r_checkF;
  T r_checkO;
  T r_checkIGrad;
  T r_checkFGrad;
  T r_checkOGrad;

141 142 143
  T *value_ig = value.gate_value;
  T *value_fg = value.gate_value + frame_size;
  T *value_in = value.gate_value + frame_size * 2;
144
  T *value_og = value.gate_value + frame_size * 3;
145 146 147 148 149 150 151 152 153
  if (old_api_version) {
    value_in = value.gate_value;
    value_ig = value.gate_value + frame_size;
    value_fg = value.gate_value + frame_size * 2;
  }

  T *grad_ig = grad.gate_grad;
  T *grad_fg = grad.gate_grad + frame_size;
  T *grad_in = grad.gate_grad + frame_size * 2;
154
  T *grad_og = grad.gate_grad + frame_size * 3;
155 156 157 158 159
  if (old_api_version) {
    grad_in = grad.gate_grad;
    grad_ig = grad.gate_grad + frame_size;
    grad_fg = grad.gate_grad + frame_size * 2;
  }
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

  for (int i = 0; i < frame_size; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    r_checkI = value.check_ig ? value.check_ig[i] : 0;
    r_checkF = value.check_fg ? value.check_fg[i] : 0;
    r_checkO = value.check_og ? value.check_og[i] : 0;
    r_state = value.state_value[i];
    r_state_atv = value.state_active_value[i];
    r_output_grad = grad.output_grad[i];
    r_state_grad = grad.state_grad[i];
    if (value.prev_state_value) {
      r_prev_state = value.prev_state_value[i];
D
dangqingqing 已提交
175 176
    }

F
Feiyu Chan 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    op(&r_value_in,
       &r_value_ig,
       &r_value_fg,
       &r_value_og,
       &r_grad_in,
       &r_grad_ig,
       &r_grad_fg,
       &r_grad_og,
       &r_prev_state,
       &r_prev_state_grad,
       &r_state,
       &r_state_grad,
       &r_state_atv,
       &r_output_grad,
       &r_checkI,
       &r_checkF,
       &r_checkO,
       &r_checkIGrad,
       &r_checkFGrad,
       &r_checkOGrad,
       &cell_clip,
       active_node,
       active_gate,
       active_state);
201 202 203 204 205 206 207 208 209 210 211

    grad_in[i] = r_grad_in;
    grad_ig[i] = r_grad_ig;
    grad_fg[i] = r_grad_fg;
    grad_og[i] = r_grad_og;
    grad.state_grad[i] = r_state_grad;

    if (grad.prev_state_grad) grad.prev_state_grad[i] = r_prev_state_grad;
    if (value.prev_state_value) {
      if (grad.check_ig_grad) grad.check_ig_grad[i] += r_checkIGrad;
      if (grad.check_fg_grad) grad.check_fg_grad[i] += r_checkFGrad;
D
dangqingqing 已提交
212
    }
213
    if (grad.check_og_grad) grad.check_og_grad[i] += r_checkOGrad;
D
dangqingqing 已提交
214 215 216
  }
}

217
template <class T, class Op>
F
Feiyu Chan 已提交
218 219 220 221
void avx_lstm_forward_one_sequence(Op op,
                                   phi::funcs::LstmMetaValue<T> value,
                                   int frame_size,
                                   T cell_clip,
222
                                   ActivationType active_node,
223
                                   ActivationType active_gate,
224 225
                                   ActivationType active_state,
                                   bool old_api_version) {
D
dangqingqing 已提交
226
#ifdef __AVX__
227 228 229 230 231 232 233 234 235 236 237 238
  __m256 r_value_in;
  __m256 r_value_ig;
  __m256 r_value_fg;
  __m256 r_value_og;
  __m256 r_checkI = _mm256_set1_ps(0.0f);
  __m256 r_checkF = _mm256_set1_ps(0.0f);
  __m256 r_checkO = _mm256_set1_ps(0.0f);
  __m256 r_state;
  __m256 r_prev_state = _mm256_set1_ps(0.0f);
  __m256 r_state_atv;
  __m256 r_out;

239 240 241
  __m256 *value_ig = reinterpret_cast<__m256 *>(value.gate_value);
  __m256 *value_fg = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
  __m256 *value_in =
242 243 244
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  __m256 *value_og =
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 3);
245 246 247 248 249
  if (old_api_version) {
    value_in = reinterpret_cast<__m256 *>(value.gate_value);
    value_ig = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
    value_fg = reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  }
250 251 252 253 254 255 256

  for (int i = 0; i < frame_size / 8; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    if (value.check_ig) {
257 258 259
      r_checkI = (reinterpret_cast<__m256 *>(value.check_ig))[i];
      r_checkF = (reinterpret_cast<__m256 *>(value.check_fg))[i];
      r_checkO = (reinterpret_cast<__m256 *>(value.check_og))[i];
D
dangqingqing 已提交
260
    }
D
dangqingqing 已提交
261

262
    if (value.prev_state_value) {
263 264
      r_prev_state =
          (reinterpret_cast<__m256 const *>(value.prev_state_value))[i];
D
dangqingqing 已提交
265 266
    }

F
Feiyu Chan 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    op(&r_value_in,
       &r_value_ig,
       &r_value_fg,
       &r_value_og,
       &r_prev_state,
       &r_state,
       &r_state_atv,
       &r_out,
       &r_checkI,
       &r_checkF,
       &r_checkO,
       &cell_clip,
       active_node,
       active_gate,
       active_state);
282 283 284 285 286

    value_in[i] = r_value_in;
    value_ig[i] = r_value_ig;
    value_fg[i] = r_value_fg;
    value_og[i] = r_value_og;
287 288 289
    (reinterpret_cast<__m256 *>(value.state_value))[i] = r_state;
    (reinterpret_cast<__m256 *>(value.state_active_value))[i] = r_state_atv;
    (reinterpret_cast<__m256 *>(value.output_value))[i] = r_out;
D
dangqingqing 已提交
290 291 292 293
  }
#endif
}

294
template <class T, class Op>
F
Feiyu Chan 已提交
295 296 297 298 299 300
void avx_lstm_backward_one_sequence(Op op,
                                    phi::funcs::LstmMetaValue<T> value,
                                    phi::funcs::LstmMetaGrad<T> grad,
                                    int frame_size,
                                    T cell_clip,
                                    ActivationType active_node,
301
                                    ActivationType active_gate,
302 303
                                    ActivationType active_state,
                                    bool old_api_version) {
D
dangqingqing 已提交
304
#ifdef __AVX__
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  __m256 r_value_in;
  __m256 r_value_ig;
  __m256 r_value_fg;
  __m256 r_value_og;
  __m256 r_grad_in;
  __m256 r_grad_ig;
  __m256 r_grad_fg;
  __m256 r_grad_og;
  __m256 r_prev_state = _mm256_set1_ps(0.0f);
  __m256 r_prev_state_grad;
  __m256 r_state_grad;
  __m256 r_state;
  __m256 r_state_atv;
  __m256 r_output_grad;
  __m256 r_checkI = _mm256_set1_ps(0.0f);
  __m256 r_checkF = _mm256_set1_ps(0.0f);
  __m256 r_checkO = _mm256_set1_ps(0.0f);
  __m256 r_checkIGrad;
  __m256 r_checkFGrad;
  __m256 r_checkOGrad;

326 327 328
  __m256 *value_ig = reinterpret_cast<__m256 *>(value.gate_value);
  __m256 *value_fg = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
  __m256 *value_in =
329 330 331
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  __m256 *value_og =
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 3);
332 333 334 335 336 337 338 339 340
  if (old_api_version) {
    value_in = reinterpret_cast<__m256 *>(value.gate_value);
    value_ig = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
    value_fg = reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  }

  __m256 *grad_ig = reinterpret_cast<__m256 *>(grad.gate_grad);
  __m256 *grad_fg = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size);
  __m256 *grad_in = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size * 2);
341
  __m256 *grad_og = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size * 3);
342 343 344 345 346
  if (old_api_version) {
    grad_in = reinterpret_cast<__m256 *>(grad.gate_grad);
    grad_ig = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size);
    grad_fg = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size * 2);
  }
347 348 349 350 351 352 353

  for (int i = 0; i < frame_size / 8; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    if (value.check_ig) {
354 355 356
      r_checkI = (reinterpret_cast<__m256 *>(value.check_ig))[i];
      r_checkF = (reinterpret_cast<__m256 *>(value.check_fg))[i];
      r_checkO = (reinterpret_cast<__m256 *>(value.check_og))[i];
D
dangqingqing 已提交
357
    }
358 359 360 361
    r_state = (reinterpret_cast<__m256 *>(value.state_value))[i];
    r_state_atv = (reinterpret_cast<__m256 *>(value.state_active_value))[i];
    r_output_grad = (reinterpret_cast<__m256 *>(grad.output_grad))[i];
    r_state_grad = (reinterpret_cast<__m256 *>(grad.state_grad))[i];
362
    if (value.prev_state_value) {
363 364
      r_prev_state =
          (reinterpret_cast<__m256 const *>(value.prev_state_value))[i];
D
dangqingqing 已提交
365 366
    }

F
Feiyu Chan 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    op(&r_value_in,
       &r_value_ig,
       &r_value_fg,
       &r_value_og,
       &r_grad_in,
       &r_grad_ig,
       &r_grad_fg,
       &r_grad_og,
       &r_prev_state,
       &r_prev_state_grad,
       &r_state,
       &r_state_grad,
       &r_state_atv,
       &r_output_grad,
       &r_checkI,
       &r_checkF,
       &r_checkO,
       &r_checkIGrad,
       &r_checkFGrad,
       &r_checkOGrad,
       &cell_clip,
       active_node,
       active_gate,
       active_state);
391 392 393 394 395

    grad_in[i] = r_grad_in;
    grad_ig[i] = r_grad_ig;
    grad_fg[i] = r_grad_fg;
    grad_og[i] = r_grad_og;
396
    (reinterpret_cast<__m256 *>(grad.state_grad))[i] = r_state_grad;
397 398

    if (grad.prev_state_grad)
399
      (reinterpret_cast<__m256 *>(grad.prev_state_grad))[i] = r_prev_state_grad;
400
    if (value.prev_state_value) {
401 402 403 404
      if (grad.check_ig_grad)
        (reinterpret_cast<__m256 *>(grad.check_ig_grad))[i] += r_checkIGrad;
      if (grad.check_fg_grad)
        (reinterpret_cast<__m256 *>(grad.check_fg_grad))[i] += r_checkFGrad;
D
dangqingqing 已提交
405
    }
406 407
    if (grad.check_og_grad)
      (reinterpret_cast<__m256 *>(grad.check_og_grad))[i] += r_checkOGrad;
D
dangqingqing 已提交
408 409 410 411
  }
#endif
}

412 413 414 415
template <class T, class Context>
void eigen_lstm_forward_one_sequence(const Context &context,
                                     phi::funcs::LstmMetaValue<T> value,
                                     int frame_size) {
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
  auto eigen_value_ig =
      typename EigenVector<T>::Type(value.gate_value, Array1(frame_size));
  auto eigen_value_fg = typename EigenVector<T>::Type(
      value.gate_value + frame_size, Array1(frame_size));
  auto eigen_value_in = typename EigenVector<T>::Type(
      value.gate_value + frame_size * 2, Array1(frame_size));
  auto eigen_value_og = typename EigenVector<T>::Type(
      value.gate_value + frame_size * 3, Array1(frame_size));
  auto eigen_state =
      typename EigenVector<T>::Type(value.state_value, Array1(frame_size));
  auto eigen_state_act = typename EigenVector<T>::Type(value.state_active_value,
                                                       Array1(frame_size));
  auto eigen_output =
      typename EigenVector<T>::Type(value.output_value, Array1(frame_size));

  auto &place = *context.eigen_device();
432 433 434 435
  TanhFunctor<T>()(place, eigen_value_in, eigen_value_in);
  SigmoidFunctor<T>()(place, eigen_value_ig, eigen_value_ig);
  SigmoidFunctor<T>()(place, eigen_value_fg, eigen_value_fg);
  SigmoidFunctor<T>()(place, eigen_value_og, eigen_value_og);
436 437 438 439 440 441 442 443

  eigen_state.device(place) = eigen_value_in * eigen_value_ig;
  if (value.prev_state_value) {
    auto eigen_prev_state = typename EigenVector<T>::ConstType(
        value.prev_state_value, Array1(frame_size));
    eigen_state.device(place) = eigen_state + eigen_prev_state * eigen_value_fg;
  }

444
  TanhFunctor<T>()(place, eigen_state, eigen_state_act);
445 446 447
  eigen_output.device(place) = eigen_value_og * eigen_state_act;
}

448 449 450 451 452
template <class T, class Context>
void eigen_lstm_backward_one_sequence(const Context &context,
                                      phi::funcs::LstmMetaValue<T> value,
                                      phi::funcs::LstmMetaGrad<T> grad,
                                      int frame_size) {
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
  auto eigen_value_ig =
      typename EigenVector<T>::Type(value.gate_value, Array1(frame_size));
  auto eigen_value_fg = typename EigenVector<T>::Type(
      value.gate_value + frame_size, Array1(frame_size));
  auto eigen_value_in = typename EigenVector<T>::Type(
      value.gate_value + frame_size * 2, Array1(frame_size));
  auto eigen_value_og = typename EigenVector<T>::Type(
      value.gate_value + frame_size * 3, Array1(frame_size));
  auto eigen_state_act = typename EigenVector<T>::Type(value.state_active_value,
                                                       Array1(frame_size));

  auto eigen_grad_ig =
      typename EigenVector<T>::Type(grad.gate_grad, Array1(frame_size));
  auto eigen_grad_fg = typename EigenVector<T>::Type(
      grad.gate_grad + frame_size, Array1(frame_size));
  auto eigen_grad_in = typename EigenVector<T>::Type(
      grad.gate_grad + frame_size * 2, Array1(frame_size));
  auto eigen_grad_og = typename EigenVector<T>::Type(
      grad.gate_grad + frame_size * 3, Array1(frame_size));
  auto eigen_grad_output =
      typename EigenVector<T>::Type(grad.output_grad, Array1(frame_size));
  auto eigen_grad_state =
      typename EigenVector<T>::Type(grad.state_grad, Array1(frame_size));

  auto &place = *context.eigen_device();
478 479 480 481 482
  SigmoidGradFunctor<T>()(place,
                          1 /*useless*/,
                          eigen_value_og,
                          eigen_grad_output * eigen_state_act,
                          eigen_grad_og);
483 484 485 486
  eigen_grad_state.device(place) =
      eigen_grad_state +
      eigen_grad_output * eigen_value_og *
          (static_cast<T>(1) - eigen_state_act * eigen_state_act);
487 488 489 490 491 492 493 494 495 496
  TanhGradFunctor<T>()(place,
                       1,
                       eigen_value_in,
                       eigen_grad_state * eigen_value_ig,
                       eigen_grad_in);
  SigmoidGradFunctor<T>()(place,
                          1,
                          eigen_value_ig,
                          eigen_grad_state * eigen_value_in,
                          eigen_grad_ig);
497 498 499
  if (value.prev_state_value) {
    auto eigen_prev_state = typename EigenVector<T>::ConstType(
        value.prev_state_value, Array1(frame_size));
500 501 502 503 504
    SigmoidGradFunctor<T>()(place,
                            1,
                            eigen_value_fg,
                            eigen_grad_state * eigen_prev_state,
                            eigen_grad_fg);
505
  } else {
506
    SigmoidGradFunctor<T>()(place, 1, eigen_value_fg, 0, eigen_grad_fg);
507 508 509 510 511 512 513 514
  }
  if (grad.prev_state_grad) {
    auto eigen_grad_pre_state =
        typename EigenVector<T>::Type(grad.prev_state_grad, Array1(frame_size));
    eigen_grad_pre_state.device(place) = eigen_grad_state * eigen_value_fg;
  }
}

515 516
template <class T, class Op, class Context>
void cpu_lstm_forward(const Context &context,
F
Feiyu Chan 已提交
517 518 519 520 521 522 523 524
                      Op op,
                      phi::funcs::LstmMetaValue<T> value,
                      int frame_size,
                      T cell_clip,
                      ActivationType active_node,
                      ActivationType active_gate,
                      ActivationType active_state,
                      bool old_api_version) {
525 526
  if (!old_api_version) {
    eigen_lstm_forward_one_sequence<T>(context, value, frame_size);
D
dangqingqing 已提交
527
  } else {
528
    if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same<T, float>::value)) {
F
Feiyu Chan 已提交
529 530 531 532 533 534 535
      avx_lstm_forward_one_sequence<T>(op,
                                       value,
                                       frame_size,
                                       cell_clip,
                                       active_node,
                                       active_gate,
                                       active_state,
536 537
                                       old_api_version);
    } else {
F
Feiyu Chan 已提交
538 539 540 541 542 543 544
      naive_lstm_forward_one_sequence<T>(op,
                                         value,
                                         frame_size,
                                         cell_clip,
                                         active_node,
                                         active_gate,
                                         active_state,
545 546
                                         old_api_version);
    }
D
dangqingqing 已提交
547 548 549
  }
}

550 551
template <class T, class Op, class Context>
void cpu_lstm_backward(const Context &context,
F
Feiyu Chan 已提交
552 553 554 555 556 557 558 559
                       Op op,
                       phi::funcs::LstmMetaValue<T> value,
                       phi::funcs::LstmMetaGrad<T> grad,
                       int frame_size,
                       T cell_clip,
                       ActivationType active_node,
                       ActivationType active_gate,
                       ActivationType active_state,
560 561 562
                       bool old_api_version) {
  if (!old_api_version) {
    eigen_lstm_backward_one_sequence<T>(context, value, grad, frame_size);
D
dangqingqing 已提交
563
  } else {
564
    if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same<T, float>::value)) {
F
Feiyu Chan 已提交
565 566 567 568 569 570 571 572
      avx_lstm_backward_one_sequence<T>(op,
                                        value,
                                        grad,
                                        frame_size,
                                        cell_clip,
                                        active_node,
                                        active_gate,
                                        active_state,
573 574
                                        old_api_version);
    } else {
F
Feiyu Chan 已提交
575 576 577 578 579 580 581 582 583
      naive_lstm_backward_one_sequence<T>(op,
                                          value,
                                          grad,
                                          frame_size,
                                          cell_clip,
                                          active_node,
                                          active_gate,
                                          active_state,
                                          old_api_version);
584
    }
D
dangqingqing 已提交
585 586 587
  }
}

588
#endif  // @{ End Group LSTM CPU
D
dangqingqing 已提交
589 590

}  // namespace detail
F
Feiyu Chan 已提交
591 592
}  // namespace funcs
}  // namespace phi