box_coder_op.cu 7.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
G
gaoyuan 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

B
baiyf 已提交
12
#include "paddle/fluid/operators/detection/box_coder_op.h"
D
dzhwinter 已提交
13
#include "paddle/fluid/platform/cuda_primitives.h"
G
gaoyuan 已提交
14 15 16 17 18 19 20

namespace paddle {
namespace operators {

template <typename T>
__global__ void EncodeCenterSizeKernel(const T* prior_box_data,
                                       const T* prior_box_var_data,
G
gaoyuan 已提交
21 22
                                       const T* target_box_data, const int row,
                                       const int col, const int len,
23
                                       const bool normalized, T* output) {
G
gaoyuan 已提交
24 25 26 27
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < row * col) {
    const int row_idx = idx / col;
    const int col_idx = idx % col;
28 29 30 31 32
    T prior_box_width = prior_box_data[col_idx * len + 2] -
                        prior_box_data[col_idx * len] + (normalized == false);
    T prior_box_height = prior_box_data[col_idx * len + 3] -
                         prior_box_data[col_idx * len + 1] +
                         (normalized == false);
G
gaoyuan 已提交
33
    T prior_box_center_x =
G
gaoyuan 已提交
34 35 36 37
        (prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
    T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
                            prior_box_data[col_idx * len + 1]) /
                           2;
G
gaoyuan 已提交
38 39

    T target_box_center_x =
G
gaoyuan 已提交
40
        (target_box_data[row_idx * len + 2] + target_box_data[row_idx * len]) /
G
gaoyuan 已提交
41
        2;
G
gaoyuan 已提交
42 43 44
    T target_box_center_y = (target_box_data[row_idx * len + 3] +
                             target_box_data[row_idx * len + 1]) /
                            2;
45 46 47 48 49
    T target_box_width = target_box_data[row_idx * len + 2] -
                         target_box_data[row_idx * len] + (normalized == false);
    T target_box_height = target_box_data[row_idx * len + 3] -
                          target_box_data[row_idx * len + 1] +
                          (normalized == false);
G
gaoyuan 已提交
50

51 52 53 54 55 56 57 58 59 60 61 62
    output[idx * len] =
        (target_box_center_x - prior_box_center_x) / prior_box_width;
    output[idx * len + 1] =
        (target_box_center_y - prior_box_center_y) / prior_box_height;
    output[idx * len + 2] = log(fabs(target_box_width / prior_box_width));
    output[idx * len + 3] = log(fabs(target_box_height / prior_box_height));
    if (prior_box_var_data) {
      output[idx * len] /= prior_box_var_data[col_idx * len];
      output[idx * len + 1] /= prior_box_var_data[col_idx * len + 1];
      output[idx * len + 2] /= prior_box_var_data[col_idx * len + 2];
      output[idx * len + 3] /= prior_box_var_data[col_idx * len + 3];
    }
G
gaoyuan 已提交
63 64 65 66 67 68
  }
}

template <typename T>
__global__ void DecodeCenterSizeKernel(const T* prior_box_data,
                                       const T* prior_box_var_data,
G
gaoyuan 已提交
69 70
                                       const T* target_box_data, const int row,
                                       const int col, const int len,
71
                                       const bool normalized, T* output) {
G
gaoyuan 已提交
72 73 74
  const int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < row * col) {
    const int col_idx = idx % col;
75 76 77 78 79
    T prior_box_width = prior_box_data[col_idx * len + 2] -
                        prior_box_data[col_idx * len] + (normalized == false);
    T prior_box_height = prior_box_data[col_idx * len + 3] -
                         prior_box_data[col_idx * len + 1] +
                         (normalized == false);
G
gaoyuan 已提交
80
    T prior_box_center_x =
G
gaoyuan 已提交
81 82 83 84
        (prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
    T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
                            prior_box_data[col_idx * len + 1]) /
                           2;
85 86 87 88
    T target_box_width, target_box_height;
    T target_box_center_x, target_box_center_y;
    if (prior_box_var_data) {
      target_box_width = exp(prior_box_var_data[col_idx * len + 2] *
Y
Yuan Gao 已提交
89
                             target_box_data[idx * len + 2]) *
G
gaoyuan 已提交
90
                         prior_box_width;
91
      target_box_height = exp(prior_box_var_data[col_idx * len + 3] *
Y
Yuan Gao 已提交
92
                              target_box_data[idx * len + 3]) *
G
gaoyuan 已提交
93
                          prior_box_height;
94
      target_box_center_x = prior_box_var_data[col_idx * len] *
Y
Yuan Gao 已提交
95
                                target_box_data[idx * len] * prior_box_width +
G
gaoyuan 已提交
96
                            prior_box_center_x;
97
      target_box_center_y = prior_box_var_data[col_idx * len + 1] *
Y
Yuan Gao 已提交
98
                                target_box_data[idx * len + 1] *
G
gaoyuan 已提交
99 100
                                prior_box_height +
                            prior_box_center_y;
101 102 103 104 105 106 107 108 109
    } else {
      target_box_width = exp(target_box_data[idx * len + 2]) * prior_box_width;
      target_box_height =
          exp(target_box_data[idx * len + 3]) * prior_box_height;
      target_box_center_x =
          target_box_data[idx * len] * prior_box_width + prior_box_center_x;
      target_box_center_y = target_box_data[idx * len + 1] * prior_box_height +
                            prior_box_center_y;
    }
G
gaoyuan 已提交
110

G
gaoyuan 已提交
111 112
    output[idx * len] = target_box_center_x - target_box_width / 2;
    output[idx * len + 1] = target_box_center_y - target_box_height / 2;
113 114 115 116
    output[idx * len + 2] =
        target_box_center_x + target_box_width / 2 - (normalized == false);
    output[idx * len + 3] =
        target_box_center_y + target_box_height / 2 - (normalized == false);
G
gaoyuan 已提交
117 118 119
  }
}

120
template <typename DeviceContext, typename T>
G
gaoyuan 已提交
121 122 123 124 125 126 127 128
class BoxCoderCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
                   "This kernel only runs on GPU device.");
    auto* prior_box = context.Input<framework::Tensor>("PriorBox");
    auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
    auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
G
gaoyuan 已提交
129
    auto* output_box = context.Output<framework::Tensor>("OutputBox");
G
gaoyuan 已提交
130

131 132 133 134 135
    const T* prior_box_data = prior_box->data<T>();
    const T* target_box_data = target_box->data<T>();
    const T* prior_box_var_data = nullptr;
    if (prior_box_var) prior_box_var_data = prior_box_var->data<T>();

G
gaoyuan 已提交
136
    if (target_box->lod().size()) {
G
gaoyuan 已提交
137
      PADDLE_ENFORCE_EQ(target_box->lod().size(), 1,
G
gaoyuan 已提交
138 139 140 141
                        "Only support 1 level of LoD.");
    }
    auto row = target_box->dims()[0];
    auto col = prior_box->dims()[0];
G
gaoyuan 已提交
142
    auto len = prior_box->dims()[1];
G
gaoyuan 已提交
143 144 145 146
    int block = 512;
    int grid = (row * col + block - 1) / block;
    auto& device_ctx = context.cuda_device_context();

G
gaoyuan 已提交
147
    output_box->mutable_data<T>({row, col, len}, context.GetPlace());
G
gaoyuan 已提交
148 149 150
    T* output = output_box->data<T>();

    auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
151
    bool normalized = context.Attr<bool>("box_normalized");
G
gaoyuan 已提交
152 153
    if (code_type == BoxCodeType::kEncodeCenterSize) {
      EncodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
154
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
155
          normalized, output);
G
gaoyuan 已提交
156 157
    } else if (code_type == BoxCodeType::kDecodeCenterSize) {
      DecodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
G
gaoyuan 已提交
158
          prior_box_data, prior_box_var_data, target_box_data, row, col, len,
159
          normalized, output);
G
gaoyuan 已提交
160 161 162 163 164 165 166 167
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
168 169 170 171
REGISTER_OP_CUDA_KERNEL(
    box_coder,
    ops::BoxCoderCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::BoxCoderCUDAKernel<paddle::platform::CUDADeviceContext, double>);