inference_api.cc 28.5 KB
Newer Older
F
flame 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/pybind/inference_api.h"
16
#include <pybind11/numpy.h>
F
flame 已提交
17 18
#include <pybind11/stl.h>
#include <cstring>
19
#include <functional>
F
flame 已提交
20
#include <iostream>
21
#include <iterator>
22
#include <map>
23
#include <memory>
F
flame 已提交
24
#include <string>
25
#include <type_traits>
26
#include <unordered_set>
27
#include <utility>
F
flame 已提交
28 29
#include <vector>
#include "paddle/fluid/inference/api/analysis_predictor.h"
30
#include "paddle/fluid/inference/api/helper.h"
F
flame 已提交
31
#include "paddle/fluid/inference/api/paddle_inference_api.h"
32
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
33
#include "paddle/fluid/inference/utils/io_utils.h"
F
flame 已提交
34 35 36 37 38

namespace py = pybind11;

namespace paddle {
namespace pybind {
39 40 41
using paddle::AnalysisPredictor;
using paddle::NativeConfig;
using paddle::NativePaddlePredictor;
F
flame 已提交
42
using paddle::PaddleBuf;
43 44
using paddle::PaddleDType;
using paddle::PaddlePassBuilder;
F
flame 已提交
45 46
using paddle::PaddlePlace;
using paddle::PaddlePredictor;
47 48 49
using paddle::PaddleTensor;
using paddle::PassStrategy;
using paddle::ZeroCopyTensor;
F
flame 已提交
50

51 52 53 54 55 56 57 58 59 60
namespace {
void BindPaddleDType(py::module *m);
void BindPaddleBuf(py::module *m);
void BindPaddleTensor(py::module *m);
void BindPaddlePlace(py::module *m);
void BindPaddlePredictor(py::module *m);
void BindNativeConfig(py::module *m);
void BindNativePredictor(py::module *m);
void BindAnalysisConfig(py::module *m);
void BindAnalysisPredictor(py::module *m);
61 62
void BindZeroCopyTensor(py::module *m);
void BindPaddlePassBuilder(py::module *m);
W
Wilber 已提交
63 64 65
void BindPaddleInferPredictor(py::module *m);
void BindPaddleInferTensor(py::module *m);
void BindPredictorPool(py::module *m);
F
flame 已提交
66

67
#ifdef PADDLE_WITH_MKLDNN
68
void BindMkldnnQuantizerConfig(py::module *m);
69
#endif
70 71

template <typename T>
72 73
PaddleBuf PaddleBufCreate(
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
74
  PaddleBuf buf(data.size() * sizeof(T));
75
  std::copy_n(static_cast<const T *>(data.data()), data.size(),
76 77 78 79 80
              static_cast<T *>(buf.data()));
  return buf;
}

template <typename T>
81 82 83
void PaddleBufReset(
    PaddleBuf &buf,                                                    // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {  // NOLINT
84
  buf.Resize(data.size() * sizeof(T));
85
  std::copy_n(static_cast<const T *>(data.data()), data.size(),
86 87 88 89 90
              static_cast<T *>(buf.data()));
}

template <typename T>
PaddleTensor PaddleTensorCreate(
91 92
    py::array_t<T, py::array::c_style | py::array::forcecast> data,
    const std::string name = "",
93 94 95 96 97
    const std::vector<std::vector<size_t>> &lod = {}, bool copy = true) {
  PaddleTensor tensor;

  if (copy) {
    PaddleBuf buf(data.size() * sizeof(T));
98
    std::copy_n(static_cast<const T *>(data.data()), data.size(),
99 100 101 102 103 104
                static_cast<T *>(buf.data()));
    tensor.data = std::move(buf);
  } else {
    tensor.data = PaddleBuf(data.mutable_data(), data.size() * sizeof(T));
  }

105
  tensor.dtype = inference::PaddleTensorGetDType<T>();
106 107 108 109 110 111 112 113
  tensor.name = name;
  tensor.lod = lod;
  tensor.shape.resize(data.ndim());
  std::copy_n(data.shape(), data.ndim(), tensor.shape.begin());

  return tensor;
}

114
py::dtype PaddleDTypeToNumpyDType(PaddleDType dtype) {
115
  py::dtype dt;
116
  switch (dtype) {
117 118 119 120 121 122 123 124 125
    case PaddleDType::INT32:
      dt = py::dtype::of<int32_t>();
      break;
    case PaddleDType::INT64:
      dt = py::dtype::of<int64_t>();
      break;
    case PaddleDType::FLOAT32:
      dt = py::dtype::of<float>();
      break;
W
Wilber 已提交
126 127 128
    case PaddleDType::UINT8:
      dt = py::dtype::of<uint8_t>();
      break;
129
    default:
130
      PADDLE_THROW(platform::errors::Unimplemented(
W
Wilber 已提交
131
          "Unsupported data type. Now only supports INT32, INT64, UINT8 and "
132
          "FLOAT32."));
133
  }
134 135 136 137 138 139 140 141 142 143

  return dt;
}

py::array PaddleTensorGetData(PaddleTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.dtype);
  return py::array(std::move(dt), {tensor.shape}, tensor.data.data());
}

template <typename T>
144 145 146
void ZeroCopyTensorCreate(
    ZeroCopyTensor &tensor,  // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
147 148 149 150 151 152
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.copy_from_cpu(static_cast<const T *>(data.data()));
}

W
Wilber 已提交
153
template <typename T>
154 155 156
void PaddleInferTensorCreate(
    paddle_infer::Tensor &tensor,  // NOLINT
    py::array_t<T, py::array::c_style | py::array::forcecast> data) {
W
Wilber 已提交
157 158 159 160 161 162
  std::vector<int> shape;
  std::copy_n(data.shape(), data.ndim(), std::back_inserter(shape));
  tensor.Reshape(std::move(shape));
  tensor.CopyFromCpu(static_cast<const T *>(data.data()));
}

163 164 165 166 167 168 169 170 171 172 173 174 175
size_t PaddleGetDTypeSize(PaddleDType dt) {
  size_t size{0};
  switch (dt) {
    case PaddleDType::INT32:
      size = sizeof(int32_t);
      break;
    case PaddleDType::INT64:
      size = sizeof(int64_t);
      break;
    case PaddleDType::FLOAT32:
      size = sizeof(float);
      break;
    default:
176 177 178
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type. Now only supports INT32, INT64 and "
          "FLOAT32."));
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  }
  return size;
}

py::array ZeroCopyTensorToNumpy(ZeroCopyTensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.copy_to_cpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.copy_to_cpu(static_cast<int64_t *>(array.mutable_data()));
      break;
    case PaddleDType::FLOAT32:
      tensor.copy_to_cpu<float>(static_cast<float *>(array.mutable_data()));
      break;
W
Wilber 已提交
199 200 201
    case PaddleDType::UINT8:
      tensor.copy_to_cpu<uint8_t>(static_cast<uint8_t *>(array.mutable_data()));
      break;
202
    default:
203
      PADDLE_THROW(platform::errors::Unimplemented(
W
Wilber 已提交
204
          "Unsupported data type. Now only supports INT32, INT64, UINT8 and "
205
          "FLOAT32."));
206 207
  }
  return array;
208
}
209

W
Wilber 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
py::array PaddleInferTensorToNumpy(paddle_infer::Tensor &tensor) {  // NOLINT
  py::dtype dt = PaddleDTypeToNumpyDType(tensor.type());
  auto tensor_shape = tensor.shape();
  py::array::ShapeContainer shape(tensor_shape.begin(), tensor_shape.end());
  py::array array(dt, std::move(shape));

  switch (tensor.type()) {
    case PaddleDType::INT32:
      tensor.CopyToCpu(static_cast<int32_t *>(array.mutable_data()));
      break;
    case PaddleDType::INT64:
      tensor.CopyToCpu(static_cast<int64_t *>(array.mutable_data()));
      break;
    case PaddleDType::FLOAT32:
      tensor.CopyToCpu<float>(static_cast<float *>(array.mutable_data()));
      break;
    default:
      PADDLE_THROW(platform::errors::Unimplemented(
          "Unsupported data type. Now only supports INT32, INT64 and "
          "FLOAT32."));
  }
  return array;
}

234 235 236 237 238
py::bytes SerializePDTensorToBytes(PaddleTensor &tensor) {  // NOLINT
  std::stringstream ss;
  paddle::inference::SerializePDTensorToStream(&ss, tensor);
  return static_cast<py::bytes>(ss.str());
}
239
}  // namespace
240

F
flame 已提交
241 242 243 244 245 246 247 248 249 250
void BindInferenceApi(py::module *m) {
  BindPaddleDType(m);
  BindPaddleBuf(m);
  BindPaddleTensor(m);
  BindPaddlePlace(m);
  BindPaddlePredictor(m);
  BindNativeConfig(m);
  BindNativePredictor(m);
  BindAnalysisConfig(m);
  BindAnalysisPredictor(m);
W
Wilber 已提交
251
  BindPaddleInferPredictor(m);
252
  BindZeroCopyTensor(m);
W
Wilber 已提交
253
  BindPaddleInferTensor(m);
254
  BindPaddlePassBuilder(m);
W
Wilber 已提交
255
  BindPredictorPool(m);
256 257 258
#ifdef PADDLE_WITH_MKLDNN
  BindMkldnnQuantizerConfig(m);
#endif
F
flame 已提交
259
  m->def("create_paddle_predictor",
W
Wilber 已提交
260
         &paddle::CreatePaddlePredictor<AnalysisConfig>, py::arg("config"));
F
flame 已提交
261
  m->def("create_paddle_predictor",
W
Wilber 已提交
262
         &paddle::CreatePaddlePredictor<NativeConfig>, py::arg("config"));
W
Wilber 已提交
263 264 265 266 267 268 269
  m->def("create_predictor", [](const paddle_infer::Config &config)
                                 -> std::unique_ptr<paddle_infer::Predictor> {
                                   auto pred =
                                       std::unique_ptr<paddle_infer::Predictor>(
                                           new paddle_infer::Predictor(config));
                                   return std::move(pred);
                                 });
F
flame 已提交
270
  m->def("paddle_dtype_size", &paddle::PaddleDtypeSize);
271
  m->def("paddle_tensor_to_bytes", &SerializePDTensorToBytes);
W
Wilber 已提交
272 273
  m->def("get_version", &paddle_infer::GetVersion);
  m->def("get_num_bytes_of_data_type", &paddle_infer::GetNumBytesOfDataType);
F
flame 已提交
274 275
}

276
namespace {
F
flame 已提交
277 278 279
void BindPaddleDType(py::module *m) {
  py::enum_<PaddleDType>(*m, "PaddleDType")
      .value("FLOAT32", PaddleDType::FLOAT32)
280 281
      .value("INT64", PaddleDType::INT64)
      .value("INT32", PaddleDType::INT32);
F
flame 已提交
282 283 284 285 286 287 288 289
}

void BindPaddleBuf(py::module *m) {
  py::class_<PaddleBuf>(*m, "PaddleBuf")
      .def(py::init<size_t>())
      .def(py::init([](std::vector<float> &data) {
        auto buf = PaddleBuf(data.size() * sizeof(float));
        std::memcpy(buf.data(), static_cast<void *>(data.data()), buf.length());
G
Gabor Buella 已提交
290
        return buf;
F
flame 已提交
291
      }))
292 293 294
      .def(py::init(&PaddleBufCreate<int32_t>))
      .def(py::init(&PaddleBufCreate<int64_t>))
      .def(py::init(&PaddleBufCreate<float>))
F
flame 已提交
295 296 297 298 299 300
      .def("resize", &PaddleBuf::Resize)
      .def("reset",
           [](PaddleBuf &self, std::vector<float> &data) {
             self.Resize(data.size() * sizeof(float));
             std::memcpy(self.data(), data.data(), self.length());
           })
301 302 303
      .def("reset", &PaddleBufReset<int32_t>)
      .def("reset", &PaddleBufReset<int64_t>)
      .def("reset", &PaddleBufReset<float>)
304
      .def("empty", &PaddleBuf::empty)
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
      .def("tolist",
           [](PaddleBuf &self, const std::string &dtype) -> py::list {
             py::list l;
             if (dtype == "int32") {
               auto *data = static_cast<int32_t *>(self.data());
               auto size = self.length() / sizeof(int32_t);
               l = py::cast(std::vector<int32_t>(data, data + size));
             } else if (dtype == "int64") {
               auto *data = static_cast<int64_t *>(self.data());
               auto size = self.length() / sizeof(int64_t);
               l = py::cast(std::vector<int64_t>(data, data + size));
             } else if (dtype == "float32") {
               auto *data = static_cast<float *>(self.data());
               auto size = self.length() / sizeof(float);
               l = py::cast(std::vector<float>(data, data + size));
             } else {
321 322 323
               PADDLE_THROW(platform::errors::Unimplemented(
                   "Unsupported data type. Now only supports INT32, INT64 and "
                   "FLOAT32."));
324 325 326
             }
             return l;
           })
F
flame 已提交
327 328 329 330 331 332 333 334 335 336
      .def("float_data",
           [](PaddleBuf &self) -> std::vector<float> {
             auto *data = static_cast<float *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
      .def("int64_data",
           [](PaddleBuf &self) -> std::vector<int64_t> {
             int64_t *data = static_cast<int64_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
           })
337 338 339 340
      .def("int32_data",
           [](PaddleBuf &self) -> std::vector<int32_t> {
             int32_t *data = static_cast<int32_t *>(self.data());
             return {data, data + self.length() / sizeof(*data)};
F
flame 已提交
341 342 343 344 345 346 347
           })
      .def("length", &PaddleBuf::length);
}

void BindPaddleTensor(py::module *m) {
  py::class_<PaddleTensor>(*m, "PaddleTensor")
      .def(py::init<>())
348 349 350 351 352 353 354 355 356 357 358 359 360
      .def(py::init(&PaddleTensorCreate<int32_t>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def(py::init(&PaddleTensorCreate<int64_t>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def(py::init(&PaddleTensorCreate<float>), py::arg("data"),
           py::arg("name") = "",
           py::arg("lod") = std::vector<std::vector<size_t>>(),
           py::arg("copy") = true)
      .def("as_ndarray", &PaddleTensorGetData)
F
flame 已提交
361 362 363 364 365 366 367 368 369 370 371
      .def_readwrite("name", &PaddleTensor::name)
      .def_readwrite("shape", &PaddleTensor::shape)
      .def_readwrite("data", &PaddleTensor::data)
      .def_readwrite("dtype", &PaddleTensor::dtype)
      .def_readwrite("lod", &PaddleTensor::lod);
}

void BindPaddlePlace(py::module *m) {
  py::enum_<PaddlePlace>(*m, "PaddlePlace")
      .value("UNK", PaddlePlace::kUNK)
      .value("CPU", PaddlePlace::kCPU)
372 373
      .value("GPU", PaddlePlace::kGPU)
      .value("XPU", PaddlePlace::kXPU);
F
flame 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386
}

void BindPaddlePredictor(py::module *m) {
  auto paddle_predictor = py::class_<PaddlePredictor>(*m, "PaddlePredictor");
  paddle_predictor
      .def("run",
           [](PaddlePredictor &self, const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &PaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &PaddlePredictor::GetOutputTensor)
387 388
      .def("get_input_names", &PaddlePredictor::GetInputNames)
      .def("get_output_names", &PaddlePredictor::GetOutputNames)
F
flame 已提交
389
      .def("zero_copy_run", &PaddlePredictor::ZeroCopyRun)
390 391
      .def("clone", &PaddlePredictor::Clone)
      .def("get_serialized_program", &PaddlePredictor::GetSerializedProgram);
F
flame 已提交
392 393 394 395 396 397 398 399 400 401

  auto config = py::class_<PaddlePredictor::Config>(paddle_predictor, "Config");
  config.def(py::init<>())
      .def_readwrite("model_dir", &PaddlePredictor::Config::model_dir);
}

void BindNativeConfig(py::module *m) {
  py::class_<NativeConfig, PaddlePredictor::Config>(*m, "NativeConfig")
      .def(py::init<>())
      .def_readwrite("use_gpu", &NativeConfig::use_gpu)
402
      .def_readwrite("use_xpu", &NativeConfig::use_xpu)
F
flame 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
      .def_readwrite("device", &NativeConfig::device)
      .def_readwrite("fraction_of_gpu_memory",
                     &NativeConfig::fraction_of_gpu_memory)
      .def_readwrite("prog_file", &NativeConfig::prog_file)
      .def_readwrite("param_file", &NativeConfig::param_file)
      .def_readwrite("specify_input_name", &NativeConfig::specify_input_name)
      .def("set_cpu_math_library_num_threads",
           &NativeConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &NativeConfig::cpu_math_library_num_threads);
}

void BindNativePredictor(py::module *m) {
  py::class_<NativePaddlePredictor, PaddlePredictor>(*m,
                                                     "NativePaddlePredictor")
      .def(py::init<const NativeConfig &>())
      .def("init", &NativePaddlePredictor::Init)
      .def("run",
           [](NativePaddlePredictor &self,
              const std::vector<PaddleTensor> &inputs) {
             std::vector<PaddleTensor> outputs;
             self.Run(inputs, &outputs);
             return outputs;
           })
      .def("get_input_tensor", &NativePaddlePredictor::GetInputTensor)
      .def("get_output_tensor", &NativePaddlePredictor::GetOutputTensor)
      .def("zero_copy_run", &NativePaddlePredictor::ZeroCopyRun)
      .def("clone", &NativePaddlePredictor::Clone)
      .def("scope", &NativePaddlePredictor::scope,
           py::return_value_policy::reference);
}

void BindAnalysisConfig(py::module *m) {
436 437 438 439 440
  py::class_<AnalysisConfig> analysis_config(*m, "AnalysisConfig");

  py::enum_<AnalysisConfig::Precision>(analysis_config, "Precision")
      .value("Float32", AnalysisConfig::Precision::kFloat32)
      .value("Int8", AnalysisConfig::Precision::kInt8)
Z
Zhaolong Xing 已提交
441
      .value("Half", AnalysisConfig::Precision::kHalf)
442 443
      .export_values();

444 445
  analysis_config.def(py::init<>())
      .def(py::init<const AnalysisConfig &>())
F
flame 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459
      .def(py::init<const std::string &>())
      .def(py::init<const std::string &, const std::string &>())
      .def("set_model", (void (AnalysisConfig::*)(const std::string &)) &
                            AnalysisConfig::SetModel)
      .def("set_model", (void (AnalysisConfig::*)(const std::string &,
                                                  const std::string &)) &
                            AnalysisConfig::SetModel)
      .def("set_prog_file", &AnalysisConfig::SetProgFile)
      .def("set_params_file", &AnalysisConfig::SetParamsFile)
      .def("model_dir", &AnalysisConfig::model_dir)
      .def("prog_file", &AnalysisConfig::prog_file)
      .def("params_file", &AnalysisConfig::params_file)
      .def("enable_use_gpu", &AnalysisConfig::EnableUseGpu,
           py::arg("memory_pool_init_size_mb"), py::arg("device_id") = 0)
460 461
      .def("enable_xpu", &AnalysisConfig::EnableXpu,
           py::arg("l3_workspace_size"))
F
flame 已提交
462 463
      .def("disable_gpu", &AnalysisConfig::DisableGpu)
      .def("use_gpu", &AnalysisConfig::use_gpu)
464
      .def("use_xpu", &AnalysisConfig::use_xpu)
F
flame 已提交
465
      .def("gpu_device_id", &AnalysisConfig::gpu_device_id)
466
      .def("xpu_device_id", &AnalysisConfig::xpu_device_id)
F
flame 已提交
467 468 469 470 471 472 473
      .def("memory_pool_init_size_mb",
           &AnalysisConfig::memory_pool_init_size_mb)
      .def("fraction_of_gpu_memory_for_pool",
           &AnalysisConfig::fraction_of_gpu_memory_for_pool)
      .def("switch_ir_optim", &AnalysisConfig::SwitchIrOptim,
           py::arg("x") = true)
      .def("ir_optim", &AnalysisConfig::ir_optim)
474
      .def("enable_memory_optim", &AnalysisConfig::EnableMemoryOptim)
475
      .def("enable_profile", &AnalysisConfig::EnableProfile)
476
      .def("disable_glog_info", &AnalysisConfig::DisableGlogInfo)
477
      .def("glog_info_disabled", &AnalysisConfig::glog_info_disabled)
478
      .def("set_optim_cache_dir", &AnalysisConfig::SetOptimCacheDir)
F
flame 已提交
479 480 481 482 483 484 485 486 487
      .def("switch_use_feed_fetch_ops", &AnalysisConfig::SwitchUseFeedFetchOps,
           py::arg("x") = true)
      .def("use_feed_fetch_ops_enabled",
           &AnalysisConfig::use_feed_fetch_ops_enabled)
      .def("switch_specify_input_names",
           &AnalysisConfig::SwitchSpecifyInputNames, py::arg("x") = true)
      .def("specify_input_name", &AnalysisConfig::specify_input_name)
      .def("enable_tensorrt_engine", &AnalysisConfig::EnableTensorRtEngine,
           py::arg("workspace_size") = 1 << 20, py::arg("max_batch_size") = 1,
488
           py::arg("min_subgraph_size") = 3,
N
nhzlx 已提交
489
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
490 491 492
           py::arg("use_static") = false, py::arg("use_calib_mode") = true)
      .def("set_trt_dynamic_shape_info",
           &AnalysisConfig::SetTRTDynamicShapeInfo,
493 494 495 496 497
           py::arg("min_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("max_input_shape") =
               std::map<std::string, std::vector<int>>({}),
           py::arg("optim_input_shape") =
498 499
               std::map<std::string, std::vector<int>>({}),
           py::arg("disable_trt_plugin_fp16") = false)
500 501
      .def("enable_tensorrt_oss", &AnalysisConfig::EnableTensorRtOSS)
      .def("tensorrt_oss_enabled", &AnalysisConfig::tensorrt_oss_enabled)
502 503 504
      .def("enable_tensorrt_dla", &AnalysisConfig::EnableTensorRtDLA,
           py::arg("dla_core") = 0)
      .def("tensorrt_dla_enabled", &AnalysisConfig::tensorrt_dla_enabled)
F
flame 已提交
505
      .def("tensorrt_engine_enabled", &AnalysisConfig::tensorrt_engine_enabled)
506 507
      .def("enable_lite_engine", &AnalysisConfig::EnableLiteEngine,
           py::arg("precision_mode") = AnalysisConfig::Precision::kFloat32,
W
Wilber 已提交
508
           py::arg("zero_copy") = false,
509 510 511
           py::arg("passes_filter") = std::vector<std::string>(),
           py::arg("ops_filter") = std::vector<std::string>())
      .def("lite_engine_enabled", &AnalysisConfig::lite_engine_enabled)
F
flame 已提交
512 513 514 515 516 517 518 519 520
      .def("switch_ir_debug", &AnalysisConfig::SwitchIrDebug,
           py::arg("x") = true)
      .def("enable_mkldnn", &AnalysisConfig::EnableMKLDNN)
      .def("mkldnn_enabled", &AnalysisConfig::mkldnn_enabled)
      .def("set_cpu_math_library_num_threads",
           &AnalysisConfig::SetCpuMathLibraryNumThreads)
      .def("cpu_math_library_num_threads",
           &AnalysisConfig::cpu_math_library_num_threads)
      .def("to_native_config", &AnalysisConfig::ToNativeConfig)
521
      .def("enable_quantizer", &AnalysisConfig::EnableMkldnnQuantizer)
522
      .def("enable_mkldnn_bfloat16", &AnalysisConfig::EnableMkldnnBfloat16)
523 524 525
#ifdef PADDLE_WITH_MKLDNN
      .def("quantizer_config", &AnalysisConfig::mkldnn_quantizer_config,
           py::return_value_policy::reference)
526 527
      .def("set_mkldnn_cache_capacity", &AnalysisConfig::SetMkldnnCacheCapacity,
           py::arg("capacity") = 0)
528
      .def("set_bfloat16_op", &AnalysisConfig::SetBfloat16Op)
529
#endif
F
flame 已提交
530 531 532
      .def("set_mkldnn_op", &AnalysisConfig::SetMKLDNNOp)
      .def("set_model_buffer", &AnalysisConfig::SetModelBuffer)
      .def("model_from_memory", &AnalysisConfig::model_from_memory)
533 534 535 536
      .def("delete_pass",
           [](AnalysisConfig &self, const std::string &pass) {
             self.pass_builder()->DeletePass(pass);
           })
W
Wilber 已提交
537 538 539 540
      .def("pass_builder",
           [](AnalysisConfig &self) {
             return dynamic_cast<PaddlePassBuilder *>(self.pass_builder());
           },
F
flame 已提交
541 542 543
           py::return_value_policy::reference);
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
#ifdef PADDLE_WITH_MKLDNN
void BindMkldnnQuantizerConfig(py::module *m) {
  py::class_<MkldnnQuantizerConfig> quantizer_config(*m,
                                                     "MkldnnQuantizerConfig");
  quantizer_config.def(py::init<const MkldnnQuantizerConfig &>())
      .def(py::init<>())
      .def("set_quant_data",
           [](MkldnnQuantizerConfig &self,
              const std::vector<PaddleTensor> &data) {
             auto warmup_data =
                 std::make_shared<std::vector<PaddleTensor>>(data);
             self.SetWarmupData(warmup_data);
             return;
           })
      .def("set_quant_batch_size", &MkldnnQuantizerConfig::SetWarmupBatchSize)
      .def(
          "set_enabled_op_types",
          (void (MkldnnQuantizerConfig::*)(std::unordered_set<std::string> &)) &
              MkldnnQuantizerConfig::SetEnabledOpTypes);
}
#endif

F
flame 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578
void BindAnalysisPredictor(py::module *m) {
  py::class_<AnalysisPredictor, PaddlePredictor>(*m, "AnalysisPredictor")
      .def(py::init<const AnalysisConfig &>())
      .def("init", &AnalysisPredictor::Init)
      .def(
          "run",
          [](AnalysisPredictor &self, const std::vector<PaddleTensor> &inputs) {
            std::vector<PaddleTensor> outputs;
            self.Run(inputs, &outputs);
            return outputs;
          })
      .def("get_input_tensor", &AnalysisPredictor::GetInputTensor)
      .def("get_output_tensor", &AnalysisPredictor::GetOutputTensor)
579 580 581
      .def("get_input_names", &AnalysisPredictor::GetInputNames)
      .def("get_output_names", &AnalysisPredictor::GetOutputNames)
      .def("get_input_tensor_shape", &AnalysisPredictor::GetInputTensorShape)
F
flame 已提交
582
      .def("zero_copy_run", &AnalysisPredictor::ZeroCopyRun)
583 584
      .def("clear_intermediate_tensor",
           &AnalysisPredictor::ClearIntermediateTensor)
585
      .def("try_shrink_memory", &AnalysisPredictor::TryShrinkMemory)
586 587 588 589 590 591 592
      .def("create_feed_fetch_var", &AnalysisPredictor::CreateFeedFetchVar)
      .def("prepare_feed_fetch", &AnalysisPredictor::PrepareFeedFetch)
      .def("prepare_argument", &AnalysisPredictor::PrepareArgument)
      .def("optimize_inference_program",
           &AnalysisPredictor::OptimizeInferenceProgram)
      .def("analysis_argument", &AnalysisPredictor::analysis_argument,
           py::return_value_policy::reference)
F
flame 已提交
593 594
      .def("clone", &AnalysisPredictor::Clone)
      .def("scope", &AnalysisPredictor::scope,
595
           py::return_value_policy::reference)
596 597 598 599
      .def("program", &AnalysisPredictor::program,
           py::return_value_policy::reference)
      .def("get_serialized_program", &AnalysisPredictor::GetSerializedProgram)
      .def("mkldnn_quantize", &AnalysisPredictor::MkldnnQuantize)
600 601
      .def("SaveOptimModel", &AnalysisPredictor::SaveOptimModel,
           py::arg("dir"));
F
flame 已提交
602
}
603

W
Wilber 已提交
604 605 606 607 608 609 610 611 612
void BindPaddleInferPredictor(py::module *m) {
  py::class_<paddle_infer::Predictor>(*m, "PaddleInferPredictor")
      .def(py::init<const paddle_infer::Config &>())
      .def("get_input_names", &paddle_infer::Predictor::GetInputNames)
      .def("get_output_names", &paddle_infer::Predictor::GetOutputNames)
      .def("get_input_handle", &paddle_infer::Predictor::GetInputHandle)
      .def("get_output_handle", &paddle_infer::Predictor::GetOutputHandle)
      .def("run", &paddle_infer::Predictor::Run)
      .def("clone", &paddle_infer::Predictor::Clone)
613
      .def("try_shrink_memory", &paddle_infer::Predictor::TryShrinkMemory)
W
Wilber 已提交
614 615 616 617
      .def("clear_intermediate_tensor",
           &paddle_infer::Predictor::ClearIntermediateTensor);
}

618 619 620 621 622 623 624 625 626 627 628 629 630
void BindZeroCopyTensor(py::module *m) {
  py::class_<ZeroCopyTensor>(*m, "ZeroCopyTensor")
      .def("reshape", &ZeroCopyTensor::Reshape)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int32_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<int64_t>)
      .def("copy_from_cpu", &ZeroCopyTensorCreate<float>)
      .def("copy_to_cpu", &ZeroCopyTensorToNumpy)
      .def("shape", &ZeroCopyTensor::shape)
      .def("set_lod", &ZeroCopyTensor::SetLoD)
      .def("lod", &ZeroCopyTensor::lod)
      .def("type", &ZeroCopyTensor::type);
}

W
Wilber 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
void BindPaddleInferTensor(py::module *m) {
  py::class_<paddle_infer::Tensor>(*m, "PaddleInferTensor")
      .def("reshape", &paddle_infer::Tensor::Reshape)
      .def("copy_from_cpu", &PaddleInferTensorCreate<int32_t>)
      .def("copy_from_cpu", &PaddleInferTensorCreate<int64_t>)
      .def("copy_from_cpu", &PaddleInferTensorCreate<float>)
      .def("copy_to_cpu", &PaddleInferTensorToNumpy)
      .def("shape", &paddle_infer::Tensor::shape)
      .def("set_lod", &paddle_infer::Tensor::SetLoD)
      .def("lod", &paddle_infer::Tensor::lod)
      .def("type", &paddle_infer::Tensor::type);
}

void BindPredictorPool(py::module *m) {
  py::class_<paddle_infer::services::PredictorPool>(*m, "PredictorPool")
      .def(py::init<const paddle_infer::Config &, size_t>())
      .def("retrive", &paddle_infer::services::PredictorPool::Retrive,
           py::return_value_policy::reference);
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
void BindPaddlePassBuilder(py::module *m) {
  py::class_<PaddlePassBuilder>(*m, "PaddlePassBuilder")
      .def(py::init<const std::vector<std::string> &>())
      .def("set_passes",
           [](PaddlePassBuilder &self, const std::vector<std::string> &passes) {
             self.ClearPasses();
             for (auto pass : passes) {
               self.AppendPass(std::move(pass));
             }
           })
      .def("append_pass", &PaddlePassBuilder::AppendPass)
      .def("insert_pass", &PaddlePassBuilder::InsertPass)
      .def("delete_pass",
           [](PaddlePassBuilder &self, const std::string &pass_type) {
             self.DeletePass(pass_type);
           })
      .def("append_analysis_pass", &PaddlePassBuilder::AppendAnalysisPass)
      .def("turn_on_debug", &PaddlePassBuilder::TurnOnDebug)
      .def("debug_string", &PaddlePassBuilder::DebugString)
      .def("all_passes", &PaddlePassBuilder::AllPasses,
           py::return_value_policy::reference)
      .def("analysis_passes", &PaddlePassBuilder::AnalysisPasses);

  py::class_<PassStrategy, PaddlePassBuilder>(*m, "PassStrategy")
      .def(py::init<const std::vector<std::string> &>())
      .def("enable_cudnn", &PassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &PassStrategy::EnableMKLDNN)
      .def("enable_mkldnn_quantizer", &PassStrategy::EnableMkldnnQuantizer)
679
      .def("enable_mkldnn_bfloat16", &PassStrategy::EnableMkldnnBfloat16)
680 681 682 683 684 685 686
      .def("use_gpu", &PassStrategy::use_gpu);

  py::class_<CpuPassStrategy, PassStrategy>(*m, "CpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const CpuPassStrategy &>())
      .def("enable_cudnn", &CpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &CpuPassStrategy::EnableMKLDNN)
687 688
      .def("enable_mkldnn_quantizer", &CpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &CpuPassStrategy::EnableMkldnnBfloat16);
689 690 691 692 693 694

  py::class_<GpuPassStrategy, PassStrategy>(*m, "GpuPassStrategy")
      .def(py::init<>())
      .def(py::init<const GpuPassStrategy &>())
      .def("enable_cudnn", &GpuPassStrategy::EnableCUDNN)
      .def("enable_mkldnn", &GpuPassStrategy::EnableMKLDNN)
695 696
      .def("enable_mkldnn_quantizer", &GpuPassStrategy::EnableMkldnnQuantizer)
      .def("enable_mkldnn_bfloat16", &GpuPassStrategy::EnableMkldnnBfloat16);
697
}
698
}  // namespace
F
flame 已提交
699 700
}  // namespace pybind
}  // namespace paddle