test_pool3d_op.py 35.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from __future__ import division
17

C
chengduoZH 已提交
18 19
import unittest
import numpy as np
20

21
import paddle.fluid.core as core
22
from op_test import OpTest
23
import paddle.fluid as fluid
C
chengduoZH 已提交
24 25


26 27 28 29 30 31 32 33
def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
def pool3D_forward_naive(x,
                         ksize,
                         strides,
                         paddings,
                         global_pool=0,
                         ceil_mode=False,
                         exclusive=True,
                         adaptive=False,
                         data_format='NCDHW',
                         pool_type='max',
                         padding_algorithm="EXPLICIT"):
    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(input_shape, pool_size,
                                                        pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCDHW":
                input_data_shape = x.shape[2:5]
            elif data_format == "NDHWC":
                input_data_shape = x.shape[1:4]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 3 or len(paddings) == 6
    is_sys = True if len(paddings) == 3 else False

    N = x.shape[0]
    C,D, H, W = [x.shape[1], x.shape[2], x.shape[3], x.shape[4]] \
        if data_format == 'NCDHW' else [x.shape[4], x.shape[1], x.shape[2],x.shape[3]]

C
chengduoZH 已提交
88 89
    if global_pool == 1:
        ksize = [D, H, W]
90 91 92 93 94 95 96 97 98
        paddings = [0 for _ in range(len(paddings))]

    pad_d_forth = paddings[0] if is_sys else paddings[0]
    pad_d_back = paddings[0] if is_sys else paddings[1]
    pad_h_up = paddings[1] if is_sys else paddings[2]
    pad_h_down = paddings[1] if is_sys else paddings[3]
    pad_w_left = paddings[2] if is_sys else paddings[4]
    pad_w_right = paddings[2] if is_sys else paddings[5]

99 100 101
    if adaptive:
        D_out, H_out, W_out = ksize
    else:
102 103 104 105 106 107 108 109 110 111 112 113 114

        D_out = (D - ksize[0] + pad_d_forth+pad_d_back + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode  else (D - ksize[0] + pad_d_forth+pad_d_back) // strides[0] + 1

        H_out = (H - ksize[1] + pad_h_up + pad_h_down + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (H - ksize[1] + pad_h_up + pad_h_down) // strides[1] + 1

        W_out = (W - ksize[2] + pad_w_left + pad_w_right + strides[2] - 1) // strides[2] + 1 \
            if ceil_mode else (W - ksize[2] + pad_w_left + pad_w_right) // strides[2] + 1


    out = np.zeros((N, C, D_out, H_out, W_out)) if data_format=='NCDHW' \
        else np.zeros((N, D_out, H_out, W_out, C))
115
    for k in range(D_out):
116 117 118 119
        if adaptive:
            d_start = adaptive_start_index(k, D, ksize[0])
            d_end = adaptive_end_index(k, D, ksize[0])
        else:
120 121 122
            d_start = np.max((k * strides[0] - pad_d_forth, 0))
            d_end = np.min((k * strides[0] + ksize[0] - pad_d_forth, D))

123
        for i in range(H_out):
124 125 126 127
            if adaptive:
                h_start = adaptive_start_index(i, H, ksize[1])
                h_end = adaptive_end_index(i, H, ksize[1])
            else:
128 129 130
                h_start = np.max((i * strides[1] - pad_h_up, 0))
                h_end = np.min((i * strides[1] + ksize[1] - pad_h_up, H))

131
            for j in range(W_out):
132 133 134 135
                if adaptive:
                    w_start = adaptive_start_index(j, W, ksize[2])
                    w_end = adaptive_end_index(j, W, ksize[2])
                else:
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
                    w_start = np.max((j * strides[2] - pad_w_left, 0))
                    w_end = np.min((j * strides[2] + ksize[2] - pad_w_left, W))

                if data_format == 'NCDHW':
                    x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:
                                 w_end]
                    if pool_type == 'avg':
                        field_size = (d_end - d_start) * (h_end - h_start) * (w_end - w_start) \
                            if (exclusive or adaptive) else ksize[0] * ksize[1] * ksize[2]
                        out[:, :, k, i, j] = np.sum(x_masked,
                                                    axis=(2, 3, 4)) / field_size
                    elif pool_type == 'max':
                        out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))

                elif data_format == 'NDHWC':
                    x_masked = x[:, d_start:d_end, h_start:h_end, w_start:
                                 w_end, :]
                    if pool_type == 'avg':
                        field_size = (d_end - d_start) * (h_end - h_start) * (w_end - w_start) \
                            if (exclusive or adaptive) else ksize[0] * ksize[1] * ksize[2]
                        out[:, k, i, j, :] = np.sum(x_masked,
                                                    axis=(1, 2, 3)) / field_size
                    elif pool_type == 'max':
                        out[:, k, i, j, :] = np.max(x_masked, axis=(1, 2, 3))
C
chengduoZH 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    return out


def max_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=True,
                             adaptive=False):
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="max")
C
chengduoZH 已提交
183 184 185
    return out


186 187 188 189 190
def avg_pool3D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
191
                             ceil_mode=False,
192 193
                             exclusive=True,
                             adaptive=False):
194 195 196 197 198 199 200 201 202 203 204
    out = pool3D_forward_naive(
        x=x,
        ksize=ksize,
        strides=strides,
        paddings=paddings,
        global_pool=global_pool,
        ceil_mode=ceil_mode,
        exclusive=exclusive,
        adaptive=adaptive,
        data_format='NCDHW',
        pool_type="avg")
C
chengduoZH 已提交
205 206 207 208 209
    return out


class TestPool3d_Op(OpTest):
    def setUp(self):
K
Kexin Zhao 已提交
210
        self.op_type = "pool3d"
211
        self.init_kernel_type()
212
        self.dtype = np.float64
C
fix bug  
chengduoZH 已提交
213
        self.init_test_case()
214 215
        self.padding_algorithm = "EXPLICIT"
        self.init_paddings()
C
chengduoZH 已提交
216
        self.init_global_pool()
K
Kexin Zhao 已提交
217
        self.init_kernel_type()
C
chengduoZH 已提交
218
        self.init_pool_type()
219
        self.init_ceil_mode()
220
        self.init_exclusive()
221
        self.init_adaptive()
222 223
        self.init_data_format()
        self.init_shape()
C
chengduoZH 已提交
224

K
Kexin Zhao 已提交
225
        input = np.random.random(self.shape).astype(self.dtype)
226
        output = pool3D_forward_naive(
227
            input, self.ksize, self.strides, self.paddings, self.global_pool,
228
            self.ceil_mode, self.exclusive, self.adaptive, self.data_format,
229
            self.pool_type, self.padding_algorithm).astype(self.dtype)
230

K
Kexin Zhao 已提交
231
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
C
chengduoZH 已提交
232 233 234 235 236

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
237 238
            'pooling_type': self.pool_type,
            'global_pooling': self.global_pool,
239
            'use_cudnn': self.use_cudnn,
240
            'ceil_mode': self.ceil_mode,
241
            'data_format': self.data_format,
242
            'exclusive': self.exclusive,
243 244
            'adaptive': self.adaptive,
            "padding_algorithm": self.padding_algorithm,
C
chengduoZH 已提交
245 246
        }

K
Kexin Zhao 已提交
247
        self.outputs = {'Out': output}
C
chengduoZH 已提交
248

249
    def has_cudnn(self):
250 251
        return core.is_compiled_with_cuda() and self.use_cudnn

C
chengduoZH 已提交
252
    def test_check_output(self):
253
        if self.has_cudnn():
254 255 256 257
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
258 259

    def test_check_grad(self):
K
Kexin Zhao 已提交
260 261
        if self.dtype == np.float16:
            return
262
        if self.has_cudnn() and self.pool_type != "max":
263 264 265 266
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=0.07)
        elif self.pool_type != "max":
267
            self.check_grad(set(['X']), 'Out', max_relative_error=0.07)
C
chengduoZH 已提交
268

269 270 271 272
    def init_data_format(self):
        self.data_format = "NCDHW"

    def init_shape(self):
273
        self.shape = [2, 3, 5, 6, 5]
274 275

    def init_test_case(self):
276 277 278 279
        self.ksize = [2, 3, 1]
        self.strides = [2, 2, 3]

    def init_paddings(self):
C
chengduoZH 已提交
280
        self.paddings = [0, 0, 0]
281
        self.padding_algorithm = "EXPLICIT"
C
chengduoZH 已提交
282

K
Kexin Zhao 已提交
283
    def init_kernel_type(self):
284
        self.use_cudnn = False
C
chengduoZH 已提交
285 286 287 288 289 290 291

    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = True

292 293 294
    def init_ceil_mode(self):
        self.ceil_mode = False

295
    def init_exclusive(self):
296
        self.exclusive = True
297

298 299 300
    def init_adaptive(self):
        self.adaptive = False

C
chengduoZH 已提交
301 302

class TestCase1(TestPool3d_Op):
303
    def init_shape(self):
C
chengduoZH 已提交
304
        self.shape = [2, 3, 7, 7, 7]
305 306

    def init_test_case(self):
C
chengduoZH 已提交
307 308
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
309 310

    def init_paddings(self):
C
chengduoZH 已提交
311
        self.paddings = [0, 0, 0]
C
chengduoZH 已提交
312

C
chengduoZH 已提交
313
    def init_pool_type(self):
C
chengduoZH 已提交
314
        self.pool_type = "avg"
C
chengduoZH 已提交
315 316 317 318 319 320

    def init_global_pool(self):
        self.global_pool = False


class TestCase2(TestPool3d_Op):
321
    def init_shape(self):
322
        self.shape = [2, 3, 6, 7, 7]
323 324

    def init_test_case(self):
325 326 327 328
        self.ksize = [3, 3, 4]
        self.strides = [1, 3, 2]

    def init_paddings(self):
C
chengduoZH 已提交
329 330
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
331 332 333 334 335 336
    def init_pool_type(self):
        self.pool_type = "avg"

    def init_global_pool(self):
        self.global_pool = False

C
chengduoZH 已提交
337 338

class TestCase3(TestPool3d_Op):
C
chengduoZH 已提交
339
    def init_pool_type(self):
C
chengduoZH 已提交
340 341 342
        self.pool_type = "max"


C
chengduoZH 已提交
343 344
class TestCase4(TestCase1):
    def init_pool_type(self):
C
chengduoZH 已提交
345
        self.pool_type = "max"
C
chengduoZH 已提交
346 347


C
chengduoZH 已提交
348 349
class TestCase5(TestCase2):
    def init_pool_type(self):
C
chengduoZH 已提交
350
        self.pool_type = "max"
C
chengduoZH 已提交
351 352


353
#--------------------test pool3d cudnn--------------------
K
Kexin Zhao 已提交
354 355


356 357 358 359 360 361
def create_test_cudnn_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
K
Kexin Zhao 已提交
362

363 364 365
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOp")
    TestCUDNNCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNCase
C
chengduoZH 已提交
366 367


368 369 370 371 372 373
create_test_cudnn_class(TestPool3d_Op)
create_test_cudnn_class(TestCase1)
create_test_cudnn_class(TestCase2)
create_test_cudnn_class(TestCase3)
create_test_cudnn_class(TestCase4)
create_test_cudnn_class(TestCase5)
K
Kexin Zhao 已提交
374 375


376 377 378 379 380 381 382
def create_test_cudnn_fp16_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNFp16Case(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
            self.dtype = np.float16
K
Kexin Zhao 已提交
383

384 385 386 387 388
        def test_check_output(self):
            if core.is_compiled_with_cuda():
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    self.check_output_with_place(place, atol=1e-3)
C
chengduoZH 已提交
389

390 391 392
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNFp16Op")
    TestCUDNNFp16Case.__name__ = cls_name
    globals()[cls_name] = TestCUDNNFp16Case
C
chengduoZH 已提交
393

K
Kexin Zhao 已提交
394

395 396 397 398 399 400
create_test_cudnn_fp16_class(TestPool3d_Op)
create_test_cudnn_fp16_class(TestCase1)
create_test_cudnn_fp16_class(TestCase2)
create_test_cudnn_fp16_class(TestCase3)
create_test_cudnn_fp16_class(TestCase4)
create_test_cudnn_fp16_class(TestCase5)
K
Kexin Zhao 已提交
401 402


403 404 405 406 407 408 409
# ---- test ceil mode ------
def create_test_cudnn_use_ceil_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestPool3DUseCeilCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True
C
chengduoZH 已提交
410

411 412
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
413

414 415 416
    cls_name = "{0}_{1}".format(parent.__name__, "CUDNNOpCeilMode")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
417 418


419 420
create_test_cudnn_use_ceil_class(TestPool3d_Op)
create_test_cudnn_use_ceil_class(TestCase1)
K
Kexin Zhao 已提交
421

C
chengduoZH 已提交
422

423 424 425 426
def create_test_use_ceil_class(parent):
    class TestPool3DUseCeilCase(parent):
        def init_ceil_mode(self):
            self.ceil_mode = True
C
chengduoZH 已提交
427

428 429 430
    cls_name = "{0}_{1}".format(parent.__name__, "CeilModeCast")
    TestPool3DUseCeilCase.__name__ = cls_name
    globals()[cls_name] = TestPool3DUseCeilCase
K
Kexin Zhao 已提交
431 432


433 434
create_test_use_ceil_class(TestCase1)
create_test_use_ceil_class(TestCase2)
K
Kexin Zhao 已提交
435

436 437 438 439

class TestAvgInclude(TestCase2):
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
440 441


442 443 444
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude(TestCase2):
K
Kexin Zhao 已提交
445
    def init_kernel_type(self):
446
        self.use_cudnn = True
K
Kexin Zhao 已提交
447

448 449 450 451 452 453 454 455 456 457 458 459
    def init_exclusive(self):
        self.exclusive = False


class TestAvgPoolAdaptive(TestCase1):
    def init_adaptive(self):
        self.adaptive = True


#-------test pool3d with asymmetric padding------
class TestPool3d_Op_AsyPadding(TestPool3d_Op):
    def init_test_case(self):
460 461 462 463
        self.ksize = [3, 4, 3]
        self.strides = [1, 1, 2]

    def init_paddings(self):
464 465 466
        self.paddings = [0, 0, 0, 2, 3, 0]

    def init_shape(self):
467
        self.shape = [2, 3, 5, 5, 6]
468 469 470 471


class TestCase1_AsyPadding(TestCase1):
    def init_test_case(self):
472 473 474 475
        self.ksize = [3, 3, 4]
        self.strides = [1, 1, 2]

    def init_paddings(self):
476 477 478
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
479
        self.shape = [2, 3, 7, 7, 6]
480 481 482 483 484 485


class TestCase2_AsyPadding(TestCase2):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
486 487

    def init_paddings(self):
488 489 490 491 492 493 494 495 496 497
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


class TestCase3_AsyPadding(TestCase3):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
498 499

    def init_paddings(self):
500 501 502 503
        self.paddings = [1, 0, 0, 0, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 5, 5, 5]
K
Kexin Zhao 已提交
504

505 506 507 508 509

class TestCase4_AsyPadding(TestCase4):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
510 511

    def init_paddings(self):
512 513 514 515 516 517 518 519 520 521
        self.paddings = [1, 0, 2, 1, 2, 1]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


class TestCase5_AsyPadding(TestCase5):
    def init_test_case(self):
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
522 523

    def init_paddings(self):
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
        self.paddings = [1, 2, 1, 1, 1, 0]

    def init_shape(self):
        self.shape = [2, 3, 7, 7, 7]


create_test_cudnn_class(TestPool3d_Op_AsyPadding)
create_test_cudnn_class(TestCase1_AsyPadding)
create_test_cudnn_class(TestCase2_AsyPadding)
create_test_cudnn_class(TestCase3_AsyPadding)
create_test_cudnn_class(TestCase4_AsyPadding)
create_test_cudnn_class(TestCase5_AsyPadding)

create_test_cudnn_fp16_class(TestPool3d_Op_AsyPadding)
create_test_cudnn_fp16_class(TestCase1_AsyPadding)
create_test_cudnn_fp16_class(TestCase2_AsyPadding)
create_test_cudnn_fp16_class(TestCase3_AsyPadding)
create_test_cudnn_fp16_class(TestCase4_AsyPadding)
create_test_cudnn_fp16_class(TestCase5_AsyPadding)

create_test_cudnn_use_ceil_class(TestPool3d_Op_AsyPadding)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding)

create_test_use_ceil_class(TestCase1_AsyPadding)
create_test_use_ceil_class(TestCase2_AsyPadding)


class TestAvgInclude_AsyPadding(TestCase2):
    def init_exclusive(self):
        self.exclusive = False

555
    def init_paddings(self):
556 557 558 559 560 561
        self.paddings = [1, 2, 1, 1, 1, 0]


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding(TestCase2):
K
Kexin Zhao 已提交
562 563 564
    def init_kernel_type(self):
        self.use_cudnn = True

565 566
    def init_exclusive(self):
        self.exclusive = False
C
chengduoZH 已提交
567

568
    def init_paddings(self):
569
        self.paddings = [1, 0, 0, 0, 0, 0]
C
chengduoZH 已提交
570

571 572
    def init_shape(self):
        self.shape = [2, 3, 5, 5, 5]
573 574


575 576 577
class TestAvgPoolAdaptive_AsyPadding(TestCase1):
    def init_adaptive(self):
        self.adaptive = True
578

579
    def init_paddings(self):
580
        self.paddings = [1, 0, 2, 1, 2, 1]
581 582


583 584 585 586
# ------------ test channel_last --------------
class TestPool3d_channel_last(TestPool3d_Op):
    def init_data_format(self):
        self.data_format = "NDHWC"
587

588
    def init_shape(self):
589
        self.shape = [2, 5, 5, 6, 3]
590

591 592 593 594 595 596 597 598 599 600 601 602 603 604

class TestCase1_channel_last(TestCase1):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


class TestCase2_channel_last(TestCase2):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
605
        self.shape = [2, 7, 7, 5, 3]
606 607 608 609 610 611 612


class TestCase3_channel_last(TestCase3):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
613
        self.shape = [2, 5, 6, 5, 3]
614 615 616 617 618 619 620


class TestCase4_channel_last(TestCase4):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
621
        self.shape = [2, 7, 6, 7, 3]
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673


class TestCase5_channel_last(TestCase5):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


create_test_cudnn_class(TestPool3d_channel_last)
create_test_cudnn_class(TestCase1_channel_last)
create_test_cudnn_class(TestCase2_channel_last)
create_test_cudnn_class(TestCase3_channel_last)
create_test_cudnn_class(TestCase4_channel_last)
create_test_cudnn_class(TestCase5_channel_last)

create_test_cudnn_use_ceil_class(TestPool3d_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_channel_last)

create_test_use_ceil_class(TestCase1_channel_last)
create_test_use_ceil_class(TestCase2_channel_last)


class TestCase5_Max(TestCase2):
    def init_pool_type(self):
        self.pool_type = "max"

    def test_check_grad(self):
        if self.dtype == np.float16:
            return
        if self.has_cudnn() and self.pool_type == "max":
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, set(['X']), 'Out', max_relative_error=1.00)
        elif self.pool_type == "max":
            self.check_grad(set(['X']), 'Out', max_relative_error=1.00)


class TestCase5_channel_last_Max(TestCase5_Max):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


create_test_cudnn_class(TestCase5_Max)
create_test_cudnn_class(TestCase5_channel_last_Max)


class TestAvgInclude_channel_last(TestCase2_channel_last):
674 675 676
    def init_exclusive(self):
        self.exclusive = False

677

678 679 680 681 682 683
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_channel_last(TestCase2_channel_last):
    def init_kernel_type(self):
        self.use_cudnn = True

684 685 686
    def init_exclusive(self):
        self.exclusive = False

687

688
class TestAvgPoolAdaptive_channel_last(TestCase1_channel_last):
689 690 691 692
    def init_adaptive(self):
        self.adaptive = True


693 694 695 696 697 698
# --- asy padding
class TestPool3d_Op_AsyPadding_channel_last(TestPool3d_Op_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
699
        self.shape = [2, 5, 5, 6, 3]
700 701 702 703 704 705 706


class TestCase1_AsyPadding_channel_last(TestCase1_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
707
        self.shape = [2, 7, 6, 8, 3]
708 709 710 711 712 713 714


class TestCase2_AsyPadding_channel_last(TestCase2_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
715
        self.shape = [2, 6, 8, 7, 3]
716 717 718 719 720 721 722


class TestCase3_AsyPadding_channel_last(TestCase3_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
723
        self.shape = [2, 5, 7, 5, 3]
724 725 726 727 728 729 730


class TestCase4_AsyPadding_channel_last(TestCase4_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
731
        self.shape = [2, 6, 7, 7, 3]
732 733 734 735 736 737 738


class TestCase5_AsyPadding_channel_last(TestCase5_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
739
        self.shape = [2, 7, 8, 6, 3]
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781


create_test_cudnn_class(TestPool3d_Op_AsyPadding_channel_last)
create_test_cudnn_class(TestCase1_AsyPadding_channel_last)
create_test_cudnn_class(TestCase2_AsyPadding_channel_last)
create_test_cudnn_class(TestCase3_AsyPadding_channel_last)
create_test_cudnn_class(TestCase4_AsyPadding_channel_last)
create_test_cudnn_class(TestCase5_AsyPadding_channel_last)

create_test_cudnn_use_ceil_class(TestPool3d_Op_AsyPadding_channel_last)
create_test_cudnn_use_ceil_class(TestCase1_AsyPadding_channel_last)

create_test_use_ceil_class(TestCase1_AsyPadding_channel_last)
create_test_use_ceil_class(TestCase2_AsyPadding_channel_last)


class TestAvgInclude_AsyPadding_channel_last(TestAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNAvgInclude_AsyPadding_channel_last(
        TestCUDNNAvgInclude_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"


class TestAvgPoolAdaptive_AsyPadding_channel_last(
        TestAvgPoolAdaptive_AsyPadding):
    def init_data_format(self):
        self.data_format = "NDHWC"

    def init_shape(self):
        self.shape = [2, 7, 7, 7, 3]


#test padding = SAME VALID
def create_test_padding_SAME_class(parent):
    class TestPaddingSMAECase(parent):
        def init_paddings(self):
782
            self.paddings = [0, 0, 0]
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingSAMEOp")
    TestPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestPaddingSMAECase


create_test_padding_SAME_class(TestPool3d_Op)
create_test_padding_SAME_class(TestCase1)
create_test_padding_SAME_class(TestCase2)
create_test_padding_SAME_class(TestCase3)
create_test_padding_SAME_class(TestCase4)
create_test_padding_SAME_class(TestCase5)

create_test_padding_SAME_class(TestPool3d_channel_last)
create_test_padding_SAME_class(TestCase1_channel_last)
create_test_padding_SAME_class(TestCase2_channel_last)
create_test_padding_SAME_class(TestCase3_channel_last)
create_test_padding_SAME_class(TestCase4_channel_last)
create_test_padding_SAME_class(TestCase5_channel_last)


def create_test_cudnn_padding_SAME_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingSMAECase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
813
            self.paddings = [1, 1, 1]
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
            self.padding_algorithm = "SAME"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingSAMEOp")
    TestCUDNNPaddingSMAECase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingSMAECase


create_test_cudnn_padding_SAME_class(TestPool3d_Op)
create_test_cudnn_padding_SAME_class(TestCase1)
create_test_cudnn_padding_SAME_class(TestCase2)
create_test_cudnn_padding_SAME_class(TestCase3)
create_test_cudnn_padding_SAME_class(TestCase4)
create_test_cudnn_padding_SAME_class(TestCase5)

create_test_cudnn_padding_SAME_class(TestPool3d_channel_last)
create_test_cudnn_padding_SAME_class(TestCase1_channel_last)
create_test_cudnn_padding_SAME_class(TestCase2_channel_last)
create_test_cudnn_padding_SAME_class(TestCase3_channel_last)
create_test_cudnn_padding_SAME_class(TestCase4_channel_last)
create_test_cudnn_padding_SAME_class(TestCase5_channel_last)


def create_test_padding_VALID_class(parent):
    class TestPaddingVALIDCase(parent):
        def init_paddings(self):
839
            self.paddings = [1, 1, 1]
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "PaddingVALIDOp")
    TestPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestPaddingVALIDCase


create_test_padding_VALID_class(TestPool3d_Op)
create_test_padding_VALID_class(TestCase1)
create_test_padding_VALID_class(TestCase2)
create_test_padding_VALID_class(TestCase3)
create_test_padding_VALID_class(TestCase4)
create_test_padding_VALID_class(TestCase5)

create_test_padding_VALID_class(TestPool3d_channel_last)
create_test_padding_VALID_class(TestCase1_channel_last)
create_test_padding_VALID_class(TestCase2_channel_last)
create_test_padding_VALID_class(TestCase3_channel_last)
create_test_padding_VALID_class(TestCase4_channel_last)
create_test_padding_VALID_class(TestCase5_channel_last)


def create_test_cudnn_padding_VALID_class(parent):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCUDNNPaddingVALIDCase(parent):
        def init_kernel_type(self):
            self.use_cudnn = True

        def init_paddings(self):
870
            self.paddings = [1, 1, 1]
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
            self.padding_algorithm = "VALID"

    cls_name = "{0}_{1}".format(parent.__name__, "CudnnPaddingVALIDOp")
    TestCUDNNPaddingVALIDCase.__name__ = cls_name
    globals()[cls_name] = TestCUDNNPaddingVALIDCase


create_test_cudnn_padding_VALID_class(TestPool3d_Op)
create_test_cudnn_padding_VALID_class(TestCase1)
create_test_cudnn_padding_VALID_class(TestCase2)
create_test_cudnn_padding_VALID_class(TestCase3)
create_test_cudnn_padding_VALID_class(TestCase4)
create_test_cudnn_padding_VALID_class(TestCase5)

create_test_cudnn_padding_VALID_class(TestPool3d_channel_last)
create_test_cudnn_padding_VALID_class(TestCase1_channel_last)
create_test_cudnn_padding_VALID_class(TestCase2_channel_last)
create_test_cudnn_padding_VALID_class(TestCase3_channel_last)
create_test_cudnn_padding_VALID_class(TestCase4_channel_last)
create_test_cudnn_padding_VALID_class(TestCase5_channel_last)


#test API
894
class TestPool3dAPI(unittest.TestCase):
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
    def test_api(self):
        x_NDHWC = np.random.random([2, 5, 5, 5, 3]).astype("float32")
        x_NCDHW = np.random.random([2, 3, 5, 5, 5]).astype("float32")

        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")

        input_NCDHW = fluid.layers.data(
            name="input_NCDHW",
            shape=[2, 3, 5, 5, 5],
            append_batch_size=False,
            dtype="float32")

        ksize = [3, 3, 3]
        out_1 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="max",
            pool_padding=[1, 1, 1],
            use_cudnn=False,
            data_format="NDHWC")

        out_2 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]],
            use_cudnn=False,
            data_format="NDHWC")

        out_3 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[[0, 0], [0, 0], [1, 1], [1, 1], [1, 1]],
            use_cudnn=False,
            data_format="NCDHW")

        out_4 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding=[1, 2, 1, 0, 0, 1],
            use_cudnn=False,
            data_format="NCDHW")
        # test VALID
        out_5 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NDHWC")

        out_6 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=ksize,
            pool_type="avg",
            pool_padding="VALID",
            use_cudnn=False,
            data_format="NCDHW")

        # test SAME
        out_7 = fluid.layers.pool3d(
            input=input_NDHWC,
            pool_size=ksize,
964
            pool_stride=[1, 1, 2],
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NDHWC")

        out_8 = fluid.layers.pool3d(
            input=input_NCDHW,
            pool_size=[4, 4, 4],
            pool_type="avg",
            pool_padding="SAME",
            use_cudnn=False,
            data_format="NCDHW")

        exe = fluid.Executor(place=fluid.CPUPlace())
        [res_1, res_2, res_3, res_4, res_5, res_6, res_7, res_8] = exe.run(
            fluid.default_main_program(),
            feed={"input_NDHWC": x_NDHWC,
                  "input_NCDHW": x_NCDHW},
            fetch_list=[
                out_1, out_2, out_3, out_4, out_5, out_6, out_7, out_8
            ])

        assert np.allclose(
            res_1,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="max",
                strides=[1, 1, 1],
                paddings=[1, 1, 1],
                data_format="NDHWC"))

        assert np.allclose(
            res_2,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NDHWC"))
        assert np.allclose(
            res_3,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 1, 1, 1, 1, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)

        assert np.allclose(
            res_4,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[1, 2, 1, 0, 0, 1],
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # VALID
        assert np.allclose(
            res_5,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NDHWC"))

        assert np.allclose(
            res_6,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=ksize,
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="VALID",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)
        # SAME
        assert np.allclose(
            res_7,
            pool3D_forward_naive(
                x=x_NDHWC,
                ksize=ksize,
                pool_type="avg",
1060
                strides=[1, 1, 2],
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NDHWC"))

        assert np.allclose(
            res_8,
            pool3D_forward_naive(
                x=x_NCDHW,
                ksize=[4, 4, 4],
                pool_type="avg",
                strides=[1, 1, 1],
                paddings=[10, 20],
                padding_algorithm="SAME",
                data_format="NCDHW"),
            rtol=0.07,
            atol=1e-05)


1079
class TestPool3dAPI_Error(unittest.TestCase):
1080 1081 1082 1083 1084 1085 1086 1087
    def test_api(self):
        input_NDHWC = fluid.layers.data(
            name="input_NDHWC",
            shape=[2, 5, 5, 5, 3],
            append_batch_size=False,
            dtype="float32")
        ksize = [3, 3, 3]

1088
        # cudnn type error
1089 1090 1091 1092 1093 1094 1095 1096 1097
        def run_1():
            out_1 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=[0],
                data_format="NDHWC")

1098
        self.assertRaises(TypeError, run_1)
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

        # data_format value error
        def run_2():
            out_2 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[1, 1, 1],
                use_cudnn=False,
                data_format="NDHWCC")

        self.assertRaises(ValueError, run_2)

        # padding str value error
        def run_3():
            out_3 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALIDSAME",
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_3)

        # padding str valid and ceil_mode value error
        def run_4():
            out_4 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding="VALID",
                use_cudnn=False,
                ceil_mode=True,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_4)

        # padding with 8 ele. value error
        def run_5():
            out_5 = fluid.layers.pool3d(
                input=input_NDHWC,
                pool_size=ksize,
                pool_type="max",
                pool_padding=[[1, 1], [0, 0], [0, 0], [1, 1], [1, 1]],
                use_cudnn=False,
                data_format="NDHWC")

        self.assertRaises(ValueError, run_5)


C
chengduoZH 已提交
1150 1151
if __name__ == '__main__':
    unittest.main()