paddle_analysis_config.h 34.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14 15 16 17 18 19 20 21 22 23 24

///
/// \file paddle_analysis_config.h
///
/// \brief Paddle Analysis Config API信息
///
/// \author paddle-infer@baidu.com
/// \date 2020-03-20
/// \since 1.7
///

25 26 27
#pragma once

#include <cassert>
28
#include <map>
29 30
#include <memory>
#include <string>
31
#include <unordered_set>
32
#include <utility>
33
#include <vector>
34

35
#include "paddle_infer_declare.h"  // NOLINT
36

37
/*! \file */
38 39 40 41
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
42 43 44
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif
45 46 47 48

namespace paddle {

class AnalysisPredictor;
49
struct MkldnnQuantizerConfig;
50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
struct LiteNNAdapterConfig {
  bool use_nnadapter{false};
  std::string nnadapter_model_cache_dir;
  std::map<std::string, std::vector<char>> nnadapter_model_cache_buffers;
  std::vector<std::string> nnadapter_device_names;
  std::string nnadapter_context_properties;
  std::string nnadapter_subgraph_partition_config_path;
  std::string nnadapter_subgraph_partition_config_buffer;

  LiteNNAdapterConfig& SetDeviceNames(const std::vector<std::string>& names);

  LiteNNAdapterConfig& SetContextProperties(const std::string& properties);

  LiteNNAdapterConfig& SetModelCacheDir(const std::string& dir);

  LiteNNAdapterConfig& SetModelCacheBuffers(
      const std::string& model_cache_token,
      const std::vector<char>& model_cache_buffer);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigPath(const std::string& path);

  LiteNNAdapterConfig& SetSubgraphPartitionConfigBuffer(
      const std::string& buffer);

  LiteNNAdapterConfig& Enable();
  LiteNNAdapterConfig& Disable();
};

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
struct DistConfig {
  bool use_dist_model() const { return use_dist_model_; }
  void EnableDistModel(bool use_dist_model) {
    use_dist_model_ = use_dist_model;
  }

  std::vector<std::string> trainer_endpoints() const {
    return trainer_endpoints_;
  }

  std::string current_endpoint() const { return current_endpoint_; }

  void SetEndpoints(const std::vector<std::string>& trainer_endpoints,
                    const std::string& current_endpoint) {
    trainer_endpoints_ = trainer_endpoints;
    current_endpoint_ = current_endpoint;
  }

  int64_t nranks() const { return nranks_; }

  int64_t rank() const { return rank_; }

  void SetRanks(int64_t nranks, int64_t rank) {
    nranks_ = nranks;
    rank_ = rank;
  }

  std::string comm_init_config() const { return comm_init_config_; }

  void SetCommInitConfig(const std::string& comm_init_config) {
    comm_init_config_ = comm_init_config;
  }

  void SetCarrierId(const std::string& carrier_id) { carrier_id_ = carrier_id; }

  std::string carrier_id() const { return carrier_id_; }

 protected:
  // DistModel Inference related
  bool use_dist_model_{false};  // whether use DistModel or not
  std::vector<std::string> trainer_endpoints_{};  // all trainers' endpoints
  std::string current_endpoint_{};                // current trainer's endpoint
  int64_t nranks_{1};               // total ranks (number of trainers)
  int64_t rank_{0};                 // rank
  std::string comm_init_config_{};  // converter config path
  std::string carrier_id_{"inference"};
};

127
///
128
/// \brief configuration manager for AnalysisPredictor.
129 130
/// \since 1.7.0
///
131
/// AnalysisConfig manages configurations of AnalysisPredictor.
132 133 134 135 136
/// During inference procedure, there are many parameters(model/params path,
/// place of inference, etc.)
/// to be specified, and various optimizations(subgraph fusion, memory
/// optimazation, TensorRT engine, etc.)
/// to be done. Users can manage these settings by creating and modifying an
137 138
/// AnalysisConfig,
/// and loading it into AnalysisPredictor.
139
///
140
struct PD_INFER_DECL AnalysisConfig {
141
  AnalysisConfig() = default;
142
  ///
143 144
  /// \brief Construct a new AnalysisConfig from another
  /// AnalysisConfig.
145
  ///
146
  /// \param[in] other another AnalysisConfig
147
  ///
148
  AnalysisConfig(const AnalysisConfig& other);
149
  ///
150
  /// \brief Construct a new AnalysisConfig from a no-combined model.
151 152 153
  ///
  /// \param[in] model_dir model directory of the no-combined model.
  ///
154
  explicit AnalysisConfig(const std::string& model_dir);
155
  ///
156
  /// \brief Construct a new AnalysisConfig from a combined model.
157 158 159 160
  ///
  /// \param[in] prog_file model file path of the combined model.
  /// \param[in] params_file params file path of the combined model.
  ///
161 162
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
163 164 165
  ///
  /// \brief Precision of inference in TensorRT.
  ///
N
nhzlx 已提交
166
  enum class Precision {
167 168 169
    kFloat32 = 0,  ///< fp32
    kInt8,         ///< int8
    kHalf,         ///< fp16
170 171 172 173 174 175 176 177
    kBf16,         ///< bf16
  };

  enum class Backend {
    kCPU = 0,
    kGPU,
    kXPU,
    kNPU,
N
nhzlx 已提交
178
  };
179

180 181 182 183 184
  ///
  /// \brief Set the no-combined model dir path.
  ///
  /// \param model_dir model dir path.
  ///
185
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
186 187 188 189 190 191 192 193

  ///
  /// \brief Set the combined model with two specific pathes for program and
  /// parameters.
  ///
  /// \param prog_file_path model file path of the combined model.
  /// \param params_file_path params file path of the combined model.
  ///
194 195
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
196 197 198 199 200
  ///
  /// \brief Set the model file path of a combined model.
  ///
  /// \param x model file path.
  ///
201
  void SetProgFile(const std::string& x) { prog_file_ = x; }
202 203 204 205 206
  ///
  /// \brief Set the params file path of a combined model.
  ///
  /// \param x params file path.
  ///
207
  void SetParamsFile(const std::string& x) { params_file_ = x; }
208 209 210 211 212 213

  ///
  /// \brief Set the path of optimization cache directory.
  ///
  /// \param opt_cache_dir the path of optimization cache directory.
  ///
214 215 216
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
217 218 219 220 221
  ///
  /// \brief Get the model directory path.
  ///
  /// \return const std::string& The model directory path.
  ///
222
  const std::string& model_dir() const { return model_dir_; }
223 224 225 226 227
  ///
  /// \brief Get the program file path.
  ///
  /// \return const std::string& The program file path.
  ///
228
  const std::string& prog_file() const { return prog_file_; }
229 230 231 232 233
  ///
  /// \brief Get the combined parameters file.
  ///
  /// \return const std::string& The combined parameters file.
  ///
234 235
  const std::string& params_file() const { return params_file_; }

236
  // Padding related.
237 238 239 240 241

  ///
  /// \brief Turn off FC Padding.
  ///
  ///
242
  void DisableFCPadding();
243 244 245 246 247
  ///
  /// \brief A boolean state telling whether fc padding is used.
  ///
  /// \return bool Whether fc padding is used.
  ///
248 249
  bool use_fc_padding() const { return use_fc_padding_; }

250
  // GPU related.
251

252 253 254 255 256 257
  ///
  /// \brief Turn on GPU.
  ///
  /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
  /// \param device_id device_id the GPU card to use (default is 0).
  ///
258
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
259 260 261 262
  ///
  /// \brief Turn off GPU.
  ///
  ///
263
  void DisableGpu();
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
  ///
  /// \brief Turn on XPU.
  ///
  /// \param l3_workspace_size The size of the video memory allocated by the l3
  ///         cache, the maximum is 16M.
  /// \param locked Whether the allocated L3 cache can be locked. If false,
  ///       it means that the L3 cache is not locked, and the allocated L3
  ///       cache can be shared by multiple models, and multiple models
  ///       sharing the L3 cache will be executed sequentially on the card.
  /// \param autotune Whether to autotune the conv operator in the model. If
  ///       true, when the conv operator of a certain dimension is executed
  ///       for the first time, it will automatically search for a better
  ///       algorithm to improve the performance of subsequent conv operators
  ///       of the same dimension.
  /// \param autotune_file Specify the path of the autotune file. If
  ///       autotune_file is specified, the algorithm specified in the
  ///       file will be used and autotune will not be performed again.
  /// \param precision Calculation accuracy of multi_encoder
  /// \param adaptive_seqlen Is the input of multi_encoder variable length
  ///
W
Wilber 已提交
285 286 287 288
  void EnableXpu(int l3_workspace_size = 0xfffc00,
                 bool locked = false,
                 bool autotune = true,
                 const std::string& autotune_file = "",
W
Wilber 已提交
289 290
                 const std::string& precision = "int16",
                 bool adaptive_seqlen = false);
J
jianghaicheng 已提交
291 292 293 294

  ///
  /// \brief Turn on IPU.
  ///
295 296 297 298 299 300
  /// \param ipu_device_num the number of IPUs.
  /// \param ipu_micro_batch_size the batch size in the graph, only work with
  /// mutable input shapes.
  /// \param ipu_enable_pipelining enable pipelining.
  /// \param ipu_batches_per_step the number of batches per run in pipelining.
  ///
W
Wilber 已提交
301 302
  void EnableIpu(int ipu_device_num = 1,
                 int ipu_micro_batch_size = 1,
303 304 305 306 307 308 309 310 311 312 313 314 315
                 bool ipu_enable_pipelining = false,
                 int ipu_batches_per_step = 1);

  ///
  /// \brief Set IPU config.
  ///
  /// \param ipu_enable_fp16 enable fp16.
  /// \param ipu_replica_num the number of graph replication.
  /// \param ipu_available_memory_proportion the available memory proportion for
  /// matmul/conv.
  /// \param ipu_enable_half_partial enable fp16 partial for matmul, only work
  /// with fp16.
  ///
W
Wilber 已提交
316 317
  void SetIpuConfig(bool ipu_enable_fp16 = false,
                    int ipu_replica_num = 1,
318 319 320
                    float ipu_available_memory_proportion = 1.0,
                    bool ipu_enable_half_partial = false);

321
  ///
322 323 324 325 326 327
  /// \brief Set XPU device id.
  ///
  /// \param device_id the XPU card to use (default is 0).
  ///
  void SetXpuDeviceId(int device_id = 0);
  ///
W
Wilber 已提交
328 329 330 331 332 333
  /// \brief Turn on NPU.
  ///
  /// \param device_id device_id the NPU card to use (default is 0).
  ///
  void EnableNpu(int device_id = 0);
  ///
334 335 336 337 338 339 340 341
  /// \brief Turn on CustomDevice.
  ///
  /// \param device_type device_type the custom device to use.
  ///
  /// \param device_id device_id the custom device to use (default is 0).
  ///
  void EnableCustomDevice(const std::string& device_type, int device_id);
  ///
342 343 344 345 346 347 348 349 350 351 352 353
  /// \brief Turn on ONNXRuntime.
  ///
  void EnableONNXRuntime();
  ///
  /// \brief Turn off ONNXRuntime.
  ///
  void DisableONNXRuntime();
  ///
  /// \brief Turn on ONNXRuntime Optimization.
  ///
  void EnableORTOptimization();
  ///
354 355 356 357
  /// \brief A boolean state telling whether the GPU is turned on.
  ///
  /// \return bool Whether the GPU is turned on.
  ///
358
  bool use_gpu() const { return use_gpu_; }
359
  ///
360 361 362 363 364 365
  /// \brief A boolean state telling whether the XPU is turned on.
  ///
  /// \return bool Whether the XPU is turned on.
  ///
  bool use_xpu() const { return use_xpu_; }
  ///
W
Wilber 已提交
366 367 368 369 370
  /// \brief A boolean state telling whether the NPU is turned on.
  ///
  /// \return bool Whether the NPU is turned on.
  ///
  bool use_npu() const { return use_npu_; }
J
jianghaicheng 已提交
371 372 373 374 375
  /// \brief A boolean state telling whether the IPU is turned on.
  ///
  /// \return bool Whether the IPU is turned on.
  ///
  bool use_ipu() const { return use_ipu_; }
376 377 378 379 380
  /// \brief A boolean state telling whether the CustomDevice is turned on.
  ///
  /// \return bool Whether the CustomDevice is turned on.
  ///
  bool use_custom_device() const { return use_custom_device_; }
W
Wilber 已提交
381
  ///
382 383 384 385 386 387 388 389 390 391 392 393 394
  /// \brief A boolean state telling whether the ONNXRuntime is turned on.
  ///
  /// \return bool Whether the ONNXRuntime is turned on.
  ///
  bool use_onnxruntime() const { return use_onnxruntime_; }
  ///
  /// \brief A boolean state telling whether the ONNXRuntime Optimization is
  /// turned on.
  ///
  /// \return bool Whether the ONNXRuntime Optimization is turned on.
  ///
  bool ort_optimization_enabled() const { return enable_ort_optimization_; }
  ///
395 396 397 398 399 400
  /// \brief Get the GPU device id.
  ///
  /// \return int The GPU device id.
  ///
  int gpu_device_id() const { return gpu_device_id_; }
  ///
401
  /// \brief Get the XPU device id.
402
  ///
403
  /// \return int The XPU device id.
404
  ///
405
  int xpu_device_id() const { return xpu_device_id_; }
406
  ///
W
Wilber 已提交
407 408 409 410 411
  /// \brief Get the NPU device id.
  ///
  /// \return int The NPU device id.
  ///
  int npu_device_id() const { return npu_device_id_; }
412
  /// \brief Get the number of IPU device .
J
jianghaicheng 已提交
413 414 415 416
  ///
  /// \return int The number of IPU device.
  ///
  int ipu_device_num() const { return ipu_device_num_; }
W
Wilber 已提交
417
  ///
418 419 420 421 422 423 424 425 426 427 428
  /// \brief Get the custom device id.
  ///
  /// \return int The custom device id.
  ///
  int custom_device_id() const { return custom_device_id_; }
  /// \brief Get the custom device type.
  ///
  /// \return string The custom device type.
  ///
  std::string custom_device_type() const { return custom_device_type_; }
  ///
429 430 431 432
  /// \brief Get the initial size in MB of the GPU memory pool.
  ///
  /// \return int The initial size in MB of the GPU memory pool.
  ///
433
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
434 435 436 437 438 439
  ///
  /// \brief Get the proportion of the initial memory pool size compared to the
  /// device.
  ///
  /// \return float The proportion of the initial memory pool size.
  ///
440
  float fraction_of_gpu_memory_for_pool() const;
441

442 443 444 445 446
  // CUDNN related.
  ///
  /// \brief Turn on CUDNN.
  ///
  ///
447
  void EnableCUDNN();
448 449 450 451 452
  ///
  /// \brief A boolean state telling whether to use CUDNN.
  ///
  /// \return bool Whether to use CUDNN.
  ///
453 454
  bool cudnn_enabled() const { return use_cudnn_; }

455 456 457 458 459 460
  ///
  /// \brief Control whether to perform IR graph optimization.
  /// If turned off, the AnalysisConfig will act just like a NativeConfig.
  ///
  /// \param x Whether the ir graph optimization is actived.
  ///
461
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
462 463 464 465 466 467
  ///
  /// \brief A boolean state telling whether the ir graph optimization is
  /// actived.
  ///
  /// \return bool Whether to use ir graph optimization.
  ///
468
  bool ir_optim() const { return enable_ir_optim_; }
469

470 471 472 473 474 475 476
  ///
  /// \brief INTERNAL Determine whether to use the feed and fetch operators.
  /// Just for internal development, not stable yet.
  /// When ZeroCopyTensor is used, this should be turned off.
  ///
  /// \param x Whether to use the feed and fetch operators.
  ///
477
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
478 479 480 481 482 483
  ///
  /// \brief A boolean state telling whether to use the feed and fetch
  /// operators.
  ///
  /// \return bool Whether to use the feed and fetch operators.
  ///
484
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
485

486 487 488 489 490 491 492 493 494 495 496
  ///
  /// \brief Control whether to specify the inputs' names.
  /// The ZeroCopyTensor type has a name member, assign it with the
  /// corresponding
  /// variable name. This is used only when the input ZeroCopyTensors passed to
  /// the
  /// AnalysisPredictor.ZeroCopyRun() cannot follow the order in the training
  /// phase.
  ///
  /// \param x Whether to specify the inputs' names.
  ///
497
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
498 499 500 501 502 503 504
  ///
  /// \brief A boolean state tell whether the input ZeroCopyTensor names
  /// specified should
  /// be used to reorder the inputs in AnalysisPredictor.ZeroCopyRun().
  ///
  /// \return bool Whether to specify the inputs' names.
  ///
505
  bool specify_input_name() const { return specify_input_name_; }
506

507 508 509 510 511 512 513 514 515 516
  ///
  /// \brief Turn on the TensorRT engine.
  /// The TensorRT engine will accelerate some subgraphes in the original Fluid
  /// computation graph. In some models such as resnet50, GoogleNet and so on,
  /// it gains significant performance acceleration.
  ///
  /// \param workspace_size The memory size(in byte) used for TensorRT
  /// workspace.
  /// \param max_batch_size The maximum batch size of this prediction task,
  /// better set as small as possible for less performance loss.
517
  /// \param min_subgraph_size The minimum TensorRT subgraph size needed, if a
518 519 520 521 522 523 524 525
  /// subgraph is smaller than this, it will not be transferred to TensorRT
  /// engine.
  /// \param precision The precision used in TensorRT.
  /// \param use_static Serialize optimization information to disk for reusing.
  /// \param use_calib_mode Use TRT int8 calibration(post training
  /// quantization).
  ///
  ///
526
  void EnableTensorRtEngine(int64_t workspace_size = 1 << 30,
W
Wilber 已提交
527 528
                            int max_batch_size = 1,
                            int min_subgraph_size = 3,
529 530 531
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
532 533 534 535 536
  ///
  /// \brief A boolean state telling whether the TensorRT engine is used.
  ///
  /// \return bool Whether the TensorRT engine is used.
  ///
537
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
538
  ///
539 540 541 542 543 544
  /// \brief  Get the TensorRT engine precision.
  ///
  /// \return Precision Get the TensorRT engine precision.
  ///
  Precision tensorrt_precision_mode() const { return tensorrt_precision_mode_; }
  ///
545 546 547 548 549 550 551
  /// \brief Set min, max, opt shape for TensorRT Dynamic shape mode.
  /// \param min_input_shape The min input shape of the subgraph input.
  /// \param max_input_shape The max input shape of the subgraph input.
  /// \param opt_input_shape The opt input shape of the subgraph input.
  /// \param disable_trt_plugin_fp16 Setting this parameter to true means that
  /// TRT plugin will not run fp16.
  ///
552 553 554 555 556
  void SetTRTDynamicShapeInfo(
      std::map<std::string, std::vector<int>> min_input_shape,
      std::map<std::string, std::vector<int>> max_input_shape,
      std::map<std::string, std::vector<int>> optim_input_shape,
      bool disable_trt_plugin_fp16 = false);
557 558 559 560 561 562
  ///
  /// \brief A boolean state telling whether the trt dynamic_shape is used.
  ///
  /// \return bool Whether the trt dynamic_shape is used.
  ///
  bool tensorrt_dynamic_shape_enabled() const {
W
Wilber 已提交
563
    return !min_input_shape_.empty();
564
  }
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
  ///
  /// \brief Enable tuned tensorrt dynamic shape.
  ///
  /// \param shape_range_info_path the path to shape_info file got in
  /// CollectShapeInfo
  /// mode.
  /// \param allow_build_at_runtime allow build trt engine at runtime.
  ///
  void EnableTunedTensorRtDynamicShape(const std::string& shape_range_info_path,
                                       bool allow_build_at_runtime = true);

  ///
  /// \brief A boolean state telling whether to use tuned tensorrt dynamic
  /// shape.
  ///
  bool tuned_tensorrt_dynamic_shape();

  ///
  /// \brief A boolean state telling whether to allow building trt engine at
  /// runtime.
  ///
  bool trt_allow_build_at_runtime();

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
  ///
  /// \brief Set execution stream. If not set a stream will be created
  /// internally.
  ///
  void SetExecStream(void* stream);

  ///
  /// \brief Get execution stream. The user needs to explicitly cast into a
  /// stream type such as cudaStream_t, hipStream_t, etc.
  ///
  void* GetExecStream() const;

  ///
  /// \brief Whether the external stream is used, if True, the predictor clone
  /// operation must use the external stream, otherwise the framework manages
  /// the stream internally.
  ///
  bool external_stream_enabled() const;

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
  ///
  /// \brief Collect shape info of all tensors in compute graph.
  ///
  /// \param shape_range_info_path the path to save shape info.
  ///
  void CollectShapeRangeInfo(const std::string& shape_range_info_path);

  ///
  /// \brief the shape info path in CollectShapeInfo mode.
  ///
  /// \return the shape info path.
  ///
  const std::string& shape_range_info_path();

  ///
  /// \brief A boolean state telling whether to collect shape info.
  ///
  /// \return bool Whether to collect shape info.
  ///
  bool shape_range_info_collected();

628 629 630 631 632 633
  ///
  /// \brief Prevent ops running in Paddle-TRT
  /// NOTE: just experimental, not an official stable API, easy to be broken.
  ///
  void Exp_DisableTensorRtOPs(const std::vector<std::string>& ops);

634 635
  ///
  /// \brief Replace some TensorRT plugins to TensorRT OSS(
636 637 638
  /// https://github.com/NVIDIA/TensorRT), with which some models's inference
  /// may be more high-performance. Libnvinfer_plugin.so greater than
  /// V7.2.1 is needed.
639
  ///
640
  void EnableVarseqlen();
641

642 643 644 645 646
  ///
  /// \brief A boolean state telling whether to use the TensorRT OSS.
  ///
  /// \return bool Whether to use the TensorRT OSS.
  ///
647
  bool tensorrt_varseqlen_enabled() { return trt_use_varseqlen_; }
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662
  ///
  /// \brief Enable TensorRT DLA
  /// \param dla_core ID of DLACore, which should be 0, 1,
  ///        ..., IBuilder.getNbDLACores() - 1
  ///
  void EnableTensorRtDLA(int dla_core = 0);

  ///
  /// \brief A boolean state telling whether to use the TensorRT DLA.
  ///
  /// \return bool Whether to use the TensorRT DLA.
  ///
  bool tensorrt_dla_enabled() { return trt_use_dla_; }

663 664 665
  void EnableTensorRtInspector();
  bool tensorrt_inspector_enabled() { return trt_use_inspector_; }

D
denglin-github 已提交
666 667 668 669 670 671 672 673 674
  void EnableDlnne(
      int min_subgraph_size = 3,
      int max_batch_size = 1,
      bool use_static_batch = false,
      std::string weight_share_mode = "0",
      std::unordered_set<std::string> disable_nodes_by_outputs = {},
      std::map<std::string, std::vector<int64_t>> input_dict = {},
      bool use_calib_mode = false,
      AnalysisConfig::Precision precision_mode = Precision::kFloat32);
D
denglin-github 已提交
675 676
  bool dlnne_enabled() const { return use_dlnne_; }

677 678 679 680 681 682 683
  ///
  /// \brief Turn on the usage of Lite sub-graph engine.
  ///
  /// \param precision_mode Precion used in Lite sub-graph engine.
  /// \param passes_filter Set the passes used in Lite sub-graph engine.
  /// \param ops_filter Operators not supported by Lite.
  ///
石晓伟 已提交
684 685
  void EnableLiteEngine(
      AnalysisConfig::Precision precision_mode = Precision::kFloat32,
686
      bool zero_copy = false,
石晓伟 已提交
687 688 689
      const std::vector<std::string>& passes_filter = {},
      const std::vector<std::string>& ops_filter = {});

690 691 692 693 694 695
  ///
  /// \brief A boolean state indicating whether the Lite sub-graph engine is
  /// used.
  ///
  /// \return bool whether the Lite sub-graph engine is used.
  ///
石晓伟 已提交
696 697
  bool lite_engine_enabled() const { return use_lite_; }

698 699 700 701 702 703 704
  ///
  /// \brief Control whether to debug IR graph analysis phase.
  /// This will generate DOT files for visualizing the computation graph after
  /// each analysis pass applied.
  ///
  /// \param x whether to debug IR graph analysis phase.
  ///
Y
Yan Chunwei 已提交
705
  void SwitchIrDebug(int x = true);
706

707 708 709 710
  ///
  /// \brief Turn on MKLDNN.
  ///
  ///
L
luotao1 已提交
711
  void EnableMKLDNN();
712 713 714
  ///
  /// \brief Set the cache capacity of different input shapes for MKLDNN.
  /// Default value 0 means not caching any shape.
715 716
  /// Please see MKL-DNN Data Caching Design Document:
  /// https://github.com/PaddlePaddle/FluidDoc/blob/develop/doc/fluid/design/mkldnn/caching/caching.md
717 718 719
  ///
  /// \param capacity The cache capacity.
  ///
720
  void SetMkldnnCacheCapacity(int capacity);
721 722 723 724 725
  ///
  /// \brief A boolean state telling whether to use the MKLDNN.
  ///
  /// \return bool Whether to use the MKLDNN.
  ///
726 727
  bool mkldnn_enabled() const { return use_mkldnn_; }

728 729 730 731 732 733
  ///
  /// \brief Set the number of cpu math library threads.
  ///
  /// \param cpu_math_library_num_threads The number of cpu math library
  /// threads.
  ///
734
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
735 736 737 738 739 740
  ///
  /// \brief An int state telling how many threads are used in the CPU math
  /// library.
  ///
  /// \return int The number of threads used in the CPU math library.
  ///
741 742 743 744
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

745 746 747 748 749
  ///
  /// \brief Transform the AnalysisConfig to NativeConfig.
  ///
  /// \return NativeConfig The NativeConfig transformed.
  ///
Y
Yan Chunwei 已提交
750
  NativeConfig ToNativeConfig() const;
751 752 753 754 755
  ///
  /// \brief Specify the operator type list to use MKLDNN acceleration.
  ///
  /// \param op_list The operator type list.
  ///
756 757 758
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }
759

760 761 762 763
  ///
  /// \brief Turn on MKLDNN quantization.
  ///
  ///
764 765
  void EnableMkldnnQuantizer();

B
baoachun 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779
  ///
  /// \brief Turn on MKLDNN int8.
  ///
  /// \param op_list The operator type list.
  ///
  void EnableMkldnnInt8(const std::unordered_set<std::string>& op_list = {});

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Int8.
  ///
  /// \return bool Whether to use the MKLDNN Int8.
  ///
  bool mkldnn_int8_enabled() const { return use_mkldnn_int8_; }

780 781 782 783 784 785 786 787 788 789 790 791 792
  ///
  /// \brief Turn on MKLDNN bfloat16.
  ///
  ///
  void EnableMkldnnBfloat16();

  ///
  /// \brief A boolean state telling whether to use the MKLDNN Bfloat16.
  ///
  /// \return bool Whether to use the MKLDNN Bfloat16.
  ///
  bool mkldnn_bfloat16_enabled() const { return use_mkldnn_bfloat16_; }

793 794 795 796 797 798 799 800
  /// \brief Specify the operator type list to use Bfloat16 acceleration.
  ///
  /// \param op_list The operator type list.
  ///
  void SetBfloat16Op(std::unordered_set<std::string> op_list) {
    bfloat16_enabled_op_types_ = op_list;
  }

801 802 803 804 805 806 807 808
  ///
  /// \brief A boolean state telling whether the thread local CUDA stream is
  /// enabled.
  ///
  /// \return bool Whether the thread local CUDA stream is enabled.
  ///
  bool thread_local_stream_enabled() const { return thread_local_stream_; }

809 810 811 812 813
  ///
  /// \brief A boolean state telling whether the MKLDNN quantization is enabled.
  ///
  /// \return bool Whether the MKLDNN quantization is enabled.
  ///
814 815
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

816 817 818 819 820
  ///
  /// \brief Get MKLDNN quantizer config.
  ///
  /// \return MkldnnQuantizerConfig* MKLDNN quantizer config.
  ///
821
  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;
822

823 824 825 826 827 828 829 830 831
  ///
  /// \brief Specify the memory buffer of program and parameter.
  /// Used when model and params are loaded directly from memory.
  ///
  /// \param prog_buffer The memory buffer of program.
  /// \param prog_buffer_size The size of the model data.
  /// \param params_buffer The memory buffer of the combined parameters file.
  /// \param params_buffer_size The size of the combined parameters data.
  ///
W
Wilber 已提交
832 833 834 835
  void SetModelBuffer(const char* prog_buffer,
                      size_t prog_buffer_size,
                      const char* params_buffer,
                      size_t params_buffer_size);
836 837 838 839 840 841
  ///
  /// \brief A boolean state telling whether the model is set from the CPU
  /// memory.
  ///
  /// \return bool Whether model and params are loaded directly from memory.
  ///
T
Tao Luo 已提交
842
  bool model_from_memory() const { return model_from_memory_; }
T
Tao Luo 已提交
843

844 845 846 847
  ///
  /// \brief Turn on memory optimize
  /// NOTE still in development.
  ///
848 849 850
  /// \param x Whether to enable memory optimize.
  ///
  void EnableMemoryOptim(bool x = true);
851 852 853 854 855 856
  ///
  /// \brief A boolean state telling whether the memory optimization is
  /// activated.
  ///
  /// \return bool Whether the memory optimization is activated.
  ///
Y
Yan Chunwei 已提交
857
  bool enable_memory_optim() const;
858

859 860 861 862
  ///
  /// \brief Turn on profiling report.
  /// If not turned on, no profiling report will be generated.
  ///
863
  void EnableProfile();
864 865 866 867 868
  ///
  /// \brief A boolean state telling whether the profiler is activated.
  ///
  /// \return bool Whether the profiler is activated.
  ///
869 870
  bool profile_enabled() const { return with_profile_; }

871 872 873
  ///
  /// \brief Mute all logs in Paddle inference.
  ///
874
  void DisableGlogInfo();
875 876 877 878 879
  ///
  /// \brief A boolean state telling whether logs in Paddle inference are muted.
  ///
  /// \return bool Whether logs in Paddle inference are muted.
  ///
880 881
  bool glog_info_disabled() const { return !with_glog_info_; }

882 883 884 885 886
  ///
  /// \brief Set the AnalysisConfig to be invalid.
  /// This is to ensure that an AnalysisConfig can only be used in one
  /// AnalysisPredictor.
  ///
887
  void SetInValid() const { is_valid_ = false; }
888 889 890 891 892
  ///
  /// \brief A boolean state telling whether the AnalysisConfig is valid.
  ///
  /// \return bool Whether the AnalysisConfig is valid.
  ///
893
  bool is_valid() const { return is_valid_; }
Y
Yan Chunwei 已提交
894

895 896
  friend class ::paddle::AnalysisPredictor;

897 898 899 900 901
  ///
  /// \brief Get a pass builder for customize the passes in IR analysis phase.
  /// NOTE: Just for developer, not an official API, easy to be broken.
  ///
  ///
902
  PassStrategy* pass_builder() const;
903 904 905 906 907 908 909

  ///
  /// \brief Enable the GPU multi-computing stream feature.
  /// NOTE: The current behavior of this interface is to bind the computation
  /// stream to the thread, and this behavior may be changed in the future.
  ///
  void EnableGpuMultiStream();
910
  void PartiallyRelease();
911

912 913 914 915 916
  ///
  /// \brief Print the summary of config.
  ///
  std::string Summary();

917 918
  LiteNNAdapterConfig& NNAdapter() { return nnadapter_config_; }

919 920 921 922 923 924
  void SetDistConfig(const DistConfig& dist_config) {
    dist_config_ = dist_config;
  }

  const DistConfig& dist_config() const { return dist_config_; }

925 926 927 928 929 930 931 932
  ///
  /// \brief Set a list of operators that do not support mixed precision. This
  /// interface is in the experimental stage and may change in the future. Note
  /// that the blacklist must be the same as the model conversion blacklist.
  ///
  void Exp_SetBlackListOpsForMixedModel(
      const std::unordered_set<std::string>& black_list);

933 934 935 936 937 938
 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

939
 protected:
940 941
  // Model pathes.
  std::string model_dir_;
942 943
  mutable std::string prog_file_;
  mutable std::string params_file_;
944

945 946 947
  // Mixed precision.
  std::unordered_set<std::string> mixed_black_list_;

S
Sylwester Fraczek 已提交
948
  // GPU related.
949
  bool use_gpu_{false};
950
  int gpu_device_id_{0};
951
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.
W
Wilber 已提交
952
  bool thread_local_stream_{false};
953

954
  bool use_cudnn_{false};
955 956
  bool use_external_stream_{false};
  void* exec_stream_{nullptr};
957

W
Wilber 已提交
958 959 960 961
  // NPU related
  bool use_npu_{false};
  int npu_device_id_{0};

962 963 964 965 966
  // CustomDevice related
  bool use_custom_device_{false};
  int custom_device_id_{0};
  std::string custom_device_type_;

967 968 969 970
  // ONNXRuntime related
  bool use_onnxruntime_{false};
  bool enable_ort_optimization_{false};

971 972 973
  // Padding related
  bool use_fc_padding_{true};

S
Sylwester Fraczek 已提交
974
  // TensorRT related.
975
  bool use_tensorrt_{false};
976 977
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
978
  int64_t tensorrt_workspace_size_{1 << 30};
979 980 981 982
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
983
  int tensorrt_max_batchsize_{1};
984 985 986 987 988
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
989 990 991
  Precision tensorrt_precision_mode_{Precision::kFloat32};
  bool trt_use_static_engine_{false};
  bool trt_use_calib_mode_{true};
992
  bool trt_use_varseqlen_{false};
993
  bool trt_with_interleaved_{false};
994 995
  std::string tensorrt_transformer_posid_{""};
  std::string tensorrt_transformer_maskid_{""};
996 997
  bool trt_use_dla_{false};
  int trt_dla_core_{0};
998 999 1000
  std::map<std::string, std::vector<int>> min_input_shape_{};
  std::map<std::string, std::vector<int>> max_input_shape_{};
  std::map<std::string, std::vector<int>> optim_input_shape_{};
1001
  std::vector<std::string> trt_disabled_ops_{};
1002
  bool disable_trt_plugin_fp16_{false};
1003 1004 1005
  bool trt_allow_build_at_runtime_{false};
  // tune to get dynamic_shape info.
  bool trt_tuned_dynamic_shape_{false};
1006
  bool trt_use_inspector_{false};
1007 1008 1009 1010 1011 1012

  // In CollectShapeInfo mode, we will collect the shape information of
  // all intermediate tensors in the compute graph and calculate the
  // min_shape, max_shape and opt_shape and save in shape_range_info_path_;
  bool collect_shape_range_info_{false};
  std::string shape_range_info_path_;
1013

D
denglin-github 已提交
1014 1015 1016
  // dlnne related.
  bool use_dlnne_{false};
  int dlnne_min_subgraph_size_{3};
D
denglin-github 已提交
1017 1018 1019 1020 1021 1022 1023
  int dlnne_max_batchsize_{1};
  std::unordered_set<std::string> dlnne_disable_nodes_by_outputs_;
  bool dlnne_use_static_batch_{true};
  std::string dlnne_weight_share_mode_;
  std::map<std::string, std::vector<int64_t>> dlnne_input_shape_dict_{};
  bool dlnne_use_calib_mode_{false};
  Precision dlnne_precision_mode_{Precision::kFloat32};
D
denglin-github 已提交
1024

Y
Yan Chunwei 已提交
1025 1026 1027
  // memory reuse related.
  bool enable_memory_optim_{false};

1028 1029 1030
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

T
Tao Luo 已提交
1031
  bool model_from_memory_{false};
1032

1033 1034 1035 1036 1037 1038 1039 1040
  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

1041 1042
  bool with_profile_{false};

1043 1044
  bool with_glog_info_{true};

1045 1046 1047 1048
  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;
1049

石晓伟 已提交
1050 1051 1052 1053
  bool use_lite_{false};
  std::vector<std::string> lite_passes_filter_;
  std::vector<std::string> lite_ops_filter_;
  Precision lite_precision_mode_;
1054
  bool lite_zero_copy_;
石晓伟 已提交
1055

W
Wilber 已提交
1056
  // XPU related.
1057
  bool use_xpu_{false};
W
Wilber 已提交
1058
  int xpu_device_id_{0};
1059
  int xpu_l3_workspace_size_{0};
W
Wilber 已提交
1060 1061 1062 1063 1064
  bool xpu_locked_;
  bool xpu_autotune_;
  std::string xpu_autotune_file_;
  std::string xpu_precision_;
  bool xpu_adaptive_seqlen_;
1065

1066 1067 1068
  // NNAdapter related
  LiteNNAdapterConfig nnadapter_config_;

1069
  // mkldnn related.
W
Wilber 已提交
1070
  int mkldnn_cache_capacity_{10};
1071 1072
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;
1073
  bool use_mkldnn_bfloat16_{false};
1074
  std::unordered_set<std::string> bfloat16_enabled_op_types_;
B
baoachun 已提交
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
  bool use_mkldnn_int8_{false};
  std::unordered_set<int> quantize_excluded_op_ids_{};
  std::unordered_set<std::string> quantize_enabled_op_types_{
      "concat",
      "conv2d",
      "depthwise_conv2d",
      "elementwise_add",
      "elementwise_mul",
      "fc",
      "matmul",
      "nearest_interp",
      "nearest_interp_v2",
      "pool2d",
      "prior_box",
      "reshape2",
      "transpose2",
      "fusion_gru",
      "fusion_lstm",
      "multi_gru",
      "slice"};
1095

J
jianghaicheng 已提交
1096 1097 1098
  // ipu related.
  bool use_ipu_{false};
  int ipu_device_num_{1};
1099
  int ipu_micro_batch_size_{1};
J
jianghaicheng 已提交
1100 1101
  bool ipu_enable_pipelining_{false};
  int ipu_batches_per_step_{1};
1102 1103 1104 1105 1106

  bool ipu_enable_fp16_{false};
  int ipu_replica_num_{1};
  float ipu_available_memory_proportion_{1.0};
  bool ipu_enable_half_partial_{false};
J
jianghaicheng 已提交
1107

1108 1109 1110 1111
  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
1112 1113
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
1114
  friend class paddle_infer::experimental::InternalUtils;
1115 1116 1117

  // fleet exe related
  DistConfig dist_config_{};
1118 1119 1120
};

}  // namespace paddle