lstm_op.cc 13.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lstm_op.h"
16
#include <string>
D
dangqingqing 已提交
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class LSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
26 27
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
28 29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");

D
dangqingqing 已提交
33 34
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(Hidden) of LSTM should not be null.");
35
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
D
dangqingqing 已提交
36
                   "Output(Cell) of LSTM should not be null.");
37 38 39 40
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                   "Output(BatchGate) of LSTM should not be null.");
D
dangqingqing 已提交
41

D
dangqingqing 已提交
42 43
    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
D
dangqingqing 已提交
44 45 46 47 48 49 50 51 52 53 54 55

    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
                     "Input(Cell) and Input(Hidden) of LSTM should not "
                     "be null at the same time.");
      auto h_dims = ctx->GetInputDim("H0");
      auto c_dims = ctx->GetInputDim("C0");
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
    }

D
dangqingqing 已提交
56
    int frame_size = in_dims[1] / 4;
D
dangqingqing 已提交
57 58 59 60 61 62 63 64 65 66 67
    auto w_dims = ctx->GetInputDim("Weight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      frame_size);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);
68

D
dangqingqing 已提交
69 70 71 72
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
73 74

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
D
dangqingqing 已提交
75 76 77 78 79 80 81
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
Y
Yu Yang 已提交
82
                        "4 * %d if disable peepholes connection",
D
dangqingqing 已提交
83 84
                        frame_size);
    }
85

D
dangqingqing 已提交
86 87 88 89 90
    framework::DDim out_dims({in_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
D
dangqingqing 已提交
91 92 93
    ctx->ShareLoD("Input", "Hidden");
    ctx->ShareLoD("Input", "Cell");
  }
94 95

 protected:
96
  framework::OpKernelType GetExpectedKernelType(
97
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
98
    return framework::OpKernelType(
Y
Yu Yang 已提交
99
        ctx.Input<framework::LoDTensor>("Input")->type(), ctx.device_context());
100
  }
D
dangqingqing 已提交
101 102 103 104
};

class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
105
  void Make() override {
D
dangqingqing 已提交
106 107 108
    AddInput("Input",
             "(LoDTensor) the first input is a LodTensor, which support "
             "variable-time length input sequence. The underlying tensor in "
D
dangqingqing 已提交
109
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
D
dangqingqing 已提交
110 111 112 113
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
K
kexinzhao 已提交
114
             "batch size and D is the hidden size.")
115
        .AsDispensable();
D
dangqingqing 已提交
116 117 118
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
Y
Yibing Liu 已提交
119
             "batch size. `H0` and `C0` can be NULL but only at the same time.")
120
        .AsDispensable();
D
dangqingqing 已提交
121 122
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
D
dangqingqing 已提交
123 124
             " - The shape is (D x 4D), where D is the hidden size. "
             " - Weight = {W_ch, W_ih, W_fh, W_oh}");
D
dangqingqing 已提交
125 126 127
    AddInput("Bias",
             "(Tensor) the learnable weights, which contains two parts: "
             "input-hidden bias weight and peephole connections weight if "
128 129
             "setting `use_peepholes` True. "
             "1. `use_peepholes = False` "
D
dangqingqing 已提交
130 131
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
132
             "2. `use_peepholes = True` "
D
dangqingqing 已提交
133
             " - The shape is (1 x 7D). "
134
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
D
dangqingqing 已提交
135
    AddOutput("Hidden",
D
dangqingqing 已提交
136 137
              "(LoDTensor) the hidden state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
D
dangqingqing 已提交
138
    AddOutput("Cell",
D
dangqingqing 已提交
139 140
              "(LoDTensor) the cell state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
141 142
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yu Yang 已提交
143
              "and output gate after the nonlinear computation. This "
K
kexinzhao 已提交
144
              "LoDTensor has the same shape as the reorganized input, which "
D
dangqingqing 已提交
145
              "is also be called batch input. The LoD size is 2. The first "
146 147 148
              "LoD is the batch offsets and the second LoD contains the "
              "indexes, which denote the position of reorganized sequence "
              "in the raw input.")
D
dangqingqing 已提交
149
        .AsIntermediate();
D
dangqingqing 已提交
150
    AddOutput("BatchCellPreAct",
K
kexinzhao 已提交
151
              "(LoDTensor) This LoDTensor is obtained in the forward and used "
D
dangqingqing 已提交
152 153
              "in the backward.")
        .AsIntermediate();
154
    AddAttr<bool>("use_peepholes",
D
dangqingqing 已提交
155 156 157
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
158
    AddAttr<bool>("is_reverse",
D
dangqingqing 已提交
159 160
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTM.")
161
        .SetDefault(false);
D
dangqingqing 已提交
162
    AddAttr<std::string>(
163
        "gate_activation",
Y
Yu Yang 已提交
164
        "(string, default: sigmoid)"
D
dangqingqing 已提交
165
        "The activation for input gate, forget gate and output "
Y
Yu Yang 已提交
166
        "gate, `sigmoid` by default.")
D
dangqingqing 已提交
167 168
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
169
    AddAttr<std::string>("cell_activation",
Y
Yu Yang 已提交
170
                         "(string, default: tanh)"
D
dangqingqing 已提交
171
                         "The activation for cell output, `tanh` by defalut.")
D
dangqingqing 已提交
172 173
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
174
    AddAttr<std::string>("candidate_activation",
Y
Yu Yang 已提交
175
                         "(string, default: tanh)"
D
dangqingqing 已提交
176
                         "The activation for candidate hidden state, "
Y
Yu Yang 已提交
177
                         "`tanh` by default.")
D
dangqingqing 已提交
178 179
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
K
kexinzhao 已提交
180 181
    AddComment(R"DOC(
Long-Short Term Memory (LSTM) Operator.
D
dangqingqing 已提交
182

D
dangqingqing 已提交
183
The defalut implementation is diagonal/peephole connection
K
kexinzhao 已提交
184
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
D
dangqingqing 已提交
185

Y
yuyang18 已提交
186
$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) $$
D
dangqingqing 已提交
187

Y
yuyang18 已提交
188
$$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) $$
D
dangqingqing 已提交
189

Y
yuyang18 已提交
190
$$ \\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) $$
D
dangqingqing 已提交
191

Y
yuyang18 已提交
192
$$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) $$
D
dangqingqing 已提交
193

Y
yuyang18 已提交
194
$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$
D
dangqingqing 已提交
195

Y
yuyang18 已提交
196
$$ h_t = o_t \\odot act_h(c_t) $$
D
dangqingqing 已提交
197

Y
yi.wu 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211
- W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
  of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
  are diagonal weight matrices for peephole connections. In our implementation,
  we use vectors to reprenset these diagonal weight matrices.
- The b terms denote bias vectors ($b_i$ is the input gate bias vector).
- $\sigma$ is the non-line activations, such as logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- $act_g$ and $act_h$ are the cell input and cell output activation functions
  and `tanh` is usually used for them.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.
D
dangqingqing 已提交
212

D
dangqingqing 已提交
213 214 215
Set `use_peepholes` False to disable peephole connection. The formula
is omitted here, please refer to the paper
http://www.bioinf.jku.at/publications/older/2604.pdf for details.
D
dangqingqing 已提交
216

D
dangqingqing 已提交
217 218
Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
D
dangqingqing 已提交
219
Users can choose to use fully-connect operator before LSTM operator.
D
dangqingqing 已提交
220 221 222 223 224 225 226 227 228

)DOC");
  }
};

class LSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

229
  void InferShape(framework::InferShapeContext* ctx) const override {
230 231 232 233 234 235
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(Hidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
                   "Input(Cell) of LSTM should not be null.");
236 237 238 239
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");
240 241 242 243 244 245

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
                   "Input(BatchGate) of LSTM should not be null.");

D
dangqingqing 已提交
246 247 248 249 250 251 252 253 254 255 256
    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

    SetOutGradDim("Input");
    SetOutGradDim("Weight");
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
D
dangqingqing 已提交
257
  }
258 259

 protected:
260
  framework::OpKernelType GetExpectedKernelType(
261
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
262
    return framework::OpKernelType(
Y
Yu Yang 已提交
263
        ctx.Input<framework::LoDTensor>("Input")->type(), ctx.device_context());
264
  }
D
dangqingqing 已提交
265 266
};

S
sneaxiy 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
class LSTMGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("lstm_grad");
    op->SetAttrMap(Attrs());
    op->SetInput("Input", Input("Input"));
    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));

    if (ForwardOp().Inputs().count("H0") > 0) {
      op->SetInput("H0", Input("H0"));
      op->SetOutput(framework::GradVarName("H0"), InputGrad("H0"));
    }

    if (ForwardOp().Inputs().count("C0") > 0) {
      op->SetInput("C0", Input("C0"));
      op->SetOutput(framework::GradVarName("C0"), InputGrad("C0"));
    }

    op->SetInput("Weight", Input("Weight"));
    op->SetOutput(framework::GradVarName("Weight"), InputGrad("Weight"));

    op->SetInput("Bias", Input("Bias"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    op->SetInput("Cell", Output("Cell"));

    op->SetInput("Hidden", Output("Hidden"));
    op->SetInput(framework::GradVarName("Hidden"), OutputGrad("Hidden"));

    op->SetInput("BatchGate", Output("BatchGate"));
    op->SetInput("BatchCellPreAct", Output("BatchCellPreAct"));
    return op;
  }
};

D
dangqingqing 已提交
306 307 308 309
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
310
REGISTER_OPERATOR(lstm, ops::LSTMOp, ops::LSTMOpMaker,
S
sneaxiy 已提交
311
                  ops::LSTMGradOpDescMaker);
312
REGISTER_OPERATOR(lstm_grad, ops::LSTMGradOp);
Q
QI JUN 已提交
313 314 315 316 317 318
REGISTER_OP_CPU_KERNEL(
    lstm, ops::LSTMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstm_grad, ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, double>);