parallel_executor.cc 56.9 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
16

D
dzhwinter 已提交
17
#include <algorithm>
Q
qingqing01 已提交
18
#include <memory>
C
chengduoZH 已提交
19
#include <string>
20
#include <tuple>
Q
Qiao Longfei 已提交
21
#include <utility>
Q
qiaolongfei 已提交
22
#include <vector>
23

Q
Qiao Longfei 已提交
24
#include "paddle/fluid/framework/details/async_ssa_graph_executor.h"
25
#include "paddle/fluid/framework/details/bind_threaded_ssa_graph_executor.h"
Y
yuyang18 已提交
26
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
27
#include "paddle/fluid/framework/details/multi_devices_helper.h"
28
#include "paddle/fluid/framework/details/op_handle_base.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31 32
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
33
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimization_var_info.h"
34
#include "paddle/fluid/framework/ir/memory_optimize_pass/reference_count_pass_helper.h"
35
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/set_reader_device_info_utils.h"
W
wangchaochaohu 已提交
36
#include "paddle/fluid/platform/event.h"
37
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
38

39
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
40 41 42
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif

43 44
DECLARE_double(eager_delete_tensor_gb);

Y
Yu Yang 已提交
45
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
46
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
47
#endif
Y
Yu Yang 已提交
48
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
49 50
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
51
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
52
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
53

Y
Yang Yang 已提交
54
namespace paddle {
Y
Yu Yang 已提交
55 56
namespace framework {

Y
Yu Yang 已提交
57
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
58
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
59
static bool gProfileStarted = false;
Y
Yu Yang 已提交
60
#endif
61

62
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
63 64 65
std::once_flag p2p_init_flag;
#endif

Y
Yu Yang 已提交
66 67
class ParallelExecutorPrivate {
 public:
68 69 70
  ParallelExecutorPrivate(const std::vector<platform::Place> &places,
                          Scope *global_scope)
      : places_(places), global_scope_(global_scope) {
Y
Yu Yang 已提交
71
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
72 73
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
74
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
75 76 77
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
78
          "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
79 80 81 82
#endif
      });
    }
  }
Y
Yu Yang 已提交
83

84 85 86 87 88 89 90 91 92 93 94
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
95

96
  bool IsUseCUDA(DeviceType use_device);
97

98 99 100 101
  void SetHasFeed(size_t dev_idx, bool has_feed = true);

  bool AllowPartialFeed() const;

102
  ir::Graph *ApplyMemoryOptimizePass(ir::Graph *graph);
S
sneaxiy 已提交
103 104 105

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

106
  /**
T
tianshuo78520a 已提交
107 108
   * NOTE(zengjinle): the fed variables of users should not be reused,
   * because users may feed them into another network. Changing the fed
109 110 111 112 113 114
   * variables that users can visit may cause calculation wrong, which is
   * a very subtle bug when traning networks. However, these variables
   * can be garbage collected.
   *
   * ParallelExecutor provides 2 methods to feed variables:
   *
T
tianshuo78520a 已提交
115
   *  - FeedTensorsIntoLocalScopes: this method would share memory of fed
116 117
   *                                variables, so we have to skip these.
   *
T
tianshuo78520a 已提交
118
   *  - FeedAndSplitTensorIntoLocalScopes: this method would copy data of fed
119 120 121 122
   *                                       variables, so we do not need to skip
   *                                       them.
   */
  inline void SetSkipMemoryReuse(size_t scope_idx, const std::string &name) {
123 124 125 126 127
    if (mem_opt_var_infos_.size() == 0) {
      VLOG(4) << "The mem_opt_var_infos_ is empty, maybe no memory "
                 "optimization strategy is enabled";
      return;
    }
128 129 130 131 132 133
    auto iter = mem_opt_var_infos_[scope_idx].find(name);
    if (iter != mem_opt_var_infos_[scope_idx].end()) {
      iter->second->SetSkipMemoryReuse(true);
    }
  }

134
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  void InitNCCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "nccl comm num:" << bst.nccl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    if (bst.use_hierarchical_allreduce_) {
      VLOG(1) << ", use_hierarchical_allreduce:"
              << bst.use_hierarchical_allreduce_ << ", inter_trainers_num:"
              << bst.hierarchical_allreduce_inter_nranks_
              << ", exter_trainers_num:"
              << bst.hierarchical_allreduce_exter_nranks_;
    }

    std::vector<ncclUniqueId *> flat_nccl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create ncclid when nranks==1
151 152
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
153 154 155 156 157 158 159 160 161 162 163 164
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one ncclid in pg model";

      ncclUniqueId *nccl_id = nullptr;

      std::string var_name = platform::GetFlatNCCLVarName(0);
      auto nccl_id_var = scope->FindVar(var_name);
      if (nccl_id_var) {
        nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
165
        VLOG(10) << "find nccl_id_var:" << var_name << ", nccl_id:" << nccl_id;
166 167
      } else {
        nccl_id = new ncclUniqueId();
168 169
        PADDLE_ENFORCE_EQ(
            platform::dynload::ncclGetUniqueId(nccl_id), ncclSuccess,
170 171 172
            platform::errors::PreconditionNotMet(
                "PaddlePaddle failed to get NCCL unique ID. It may due to your "
                "system settings or NCCL library error, please debug on NCCL"));
173 174
        VLOG(10) << "can't find nccl_id_var:" << var_name
                 << ", nccl_id:" << nccl_id;
175 176 177 178
      }

      flat_nccl_ids.push_back(nccl_id);

179 180
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
181 182 183 184 185 186
      VLOG(1) << "init bst nccl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
187 188
      nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                               bst.trainer_id_);
189 190 191 192 193 194
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
      std::string var_name = platform::GetFlatNCCLVarName(i);
      auto nccl_id_var = scope->FindVar(var_name);
195 196 197
      PADDLE_ENFORCE_NOT_NULL(
          nccl_id_var,
          platform::errors::NotFound("Can't find nccl_id_var '%s'.", var_name));
198 199 200 201
      auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
      flat_nccl_ids.push_back(nccl_id);
    }

202 203
    nccl_ctxs_->InitFlatCtxs(places_, flat_nccl_ids, bst.num_trainers_,
                             bst.trainer_id_);
204 205

    if (bst.use_hierarchical_allreduce_) {
G
gongweibao 已提交
206 207 208 209
      std::vector<ncclUniqueId *> inter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalInterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
210 211 212
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
G
gongweibao 已提交
213 214 215
        auto inter_nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        inter_nccl_ids.push_back(inter_nccl_id);
      }
216 217 218 219 220

      std::vector<ncclUniqueId *> exter_nccl_ids;
      for (int i = 0; i < static_cast<int>(bst.nccl_comm_num_); i++) {
        std::string var_name = platform::GetHierarchicalExterNCCLVarName(i);
        auto nccl_id_var = scope->FindVar(var_name);
221 222 223
        PADDLE_ENFORCE_NOT_NULL(nccl_id_var,
                                platform::errors::NotFound(
                                    "Can't find nccl_id_var '%s'.", var_name));
224 225 226
        auto nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
        exter_nccl_ids.push_back(nccl_id);
      }
G
gongweibao 已提交
227

228 229 230 231
      nccl_ctxs_->InitHierarchicalCtxs(
          places_, inter_nccl_ids, exter_nccl_ids, bst.num_trainers_,
          bst.trainer_id_, bst.hierarchical_allreduce_inter_nranks_,
          bst.hierarchical_allreduce_exter_nranks_);
232 233
    }
  }
234

235
  void InitOrGetNCCLCommunicator(framework::Scope *scope, BuildStrategy *bst) {
236 237 238
    const std::string var_name = "NCCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
239 240 241
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
242 243 244 245 246 247
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      nccl_ctxs_ = var->GetMutable<platform::NCCLCommunicator>();
      return;
    }

248
    if (bst->use_hierarchical_allreduce_) {
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
      PADDLE_ENFORCE_GT(
          bst->num_trainers_, 1,
          platform::errors::PreconditionNotMet(
              "The num_trainers should be greater than 1, but received %llu.",
              bst->num_trainers_));
      PADDLE_ENFORCE_GT(
          bst->hierarchical_allreduce_inter_nranks_, 1,
          platform::errors::PreconditionNotMet(
              "The inter_nranks should be greater than 1, but received %d.",
              bst->hierarchical_allreduce_inter_nranks_));
      PADDLE_ENFORCE_EQ(
          bst->num_trainers_ % bst->hierarchical_allreduce_inter_nranks_, 0,
          platform::errors::PreconditionNotMet(
              "num_trainers:%llu mod inter_nranks:%d != 0", bst->num_trainers_,
              bst->hierarchical_allreduce_inter_nranks_));
264 265 266 267 268

      bst->hierarchical_allreduce_exter_nranks_ =
          bst->num_trainers_ / bst->hierarchical_allreduce_inter_nranks_;
    }

269 270
    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    nccl_ctxs_ = scope->Var(var_name)->GetMutable<platform::NCCLCommunicator>();
271
    InitNCCLCtxs(scope, *bst);
272
  }
273 274
#endif

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
#if defined(PADDLE_WITH_XPU_BKCL)
  void InitBKCLCtxs(framework::Scope *scope, const BuildStrategy &bst) {
    VLOG(1) << "bkcl comm num:" << bst.bkcl_comm_num_ << ", nranks:" << nranks_
            << ", num_trainers:" << bst.num_trainers_
            << ", trainer_id:" << bst.trainer_id_;

    PADDLE_ENFORCE_EQ(bst.use_hierarchical_allreduce_, false,
                      platform::errors::Unimplemented(
                          "xpu doesn't support use_hierarchical_allreduce"));

    std::vector<BKCLUniqueId *> flat_bkcl_ids;
    if (nranks_ == 1) {
      // FIXME(gongwb): need not to create bkclid when nranks==1
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    if (bst.enable_parallel_graph_) {
      VLOG(1) << "use only one bkclid in pg model";

      BKCLUniqueId *bkcl_id = nullptr;

      std::string var_name = platform::GetFlatBKCLVarName(0);
      auto bkcl_id_var = scope->FindVar(var_name);
      std::unique_ptr<BKCLUniqueId> id(new BKCLUniqueId());
      if (bkcl_id_var) {
        bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      } else {
        PADDLE_ENFORCE_EQ(
            bkcl_get_unique_id(id.get()), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl get unique id failed"));
        bkcl_id = id.get();
      }

      flat_bkcl_ids.push_back(bkcl_id);

      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      VLOG(1) << "init bst bkcl context complete!";
      return;
    }

    // num_trainers ==1 && places > 1
    if (bst.num_trainers_ == 1) {
      bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                               bst.trainer_id_);
      return;
    }

    for (int i = 0; i < static_cast<int>(bst.bkcl_comm_num_); i++) {
      std::string var_name = platform::GetFlatBKCLVarName(i);
      auto bkcl_id_var = scope->FindVar(var_name);
      PADDLE_ENFORCE_NOT_NULL(
          bkcl_id_var,
          platform::errors::NotFound("can't find %s bkcl_id_var", var_name));
      auto bkcl_id = bkcl_id_var->GetMutable<BKCLUniqueId>();
      flat_bkcl_ids.push_back(bkcl_id);
    }

    bkcl_ctxs_->InitFlatCtxs(places_, flat_bkcl_ids, bst.num_trainers_,
                             bst.trainer_id_);
  }

  void InitOrGetBKCLCommunicator(framework::Scope *scope,
                                 const BuildStrategy &bst) {
    const std::string var_name = "BKCLCommunicator";
    auto var = scope->FindVar(var_name);
    if (var != nullptr) {
      PADDLE_ENFORCE_EQ(var->IsInitialized(), true,
                        platform::errors::PreconditionNotMet(
                            "if %s exists, it must be initialized", var_name));
      VLOG(1) << "find " << var_name
              << " in scope, so use it and does not recreate!";
      bkcl_ctxs_ = var->GetMutable<platform::BKCLCommunicator>();
      return;
    }

    VLOG(1) << "not find " << var_name << " in scope, so recreate it!";
    bkcl_ctxs_ = scope->Var(var_name)->GetMutable<platform::BKCLCommunicator>();
    InitBKCLCtxs(scope, bst);
  }
#endif

359 360 361 362 363
  inline bool IsPersistable(const std::string &name) const {
    auto iter = is_persistable_.find(name);
    return iter != is_persistable_.end() && iter->second;
  }

D
dzhwinter 已提交
364
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
365 366
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
367
  std::vector<Scope *> local_exec_scopes_;
368
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
369
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
370

371 372
  std::unordered_map<std::string, bool> is_persistable_;

373
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
374
  platform::NCCLCommunicator *nccl_ctxs_{nullptr};
375 376
#elif defined(PADDLE_WITH_XPU_BKCL)
  platform::BKCLCommunicator *bkcl_ctxs_{nullptr};
Y
Yu Yang 已提交
377
#endif
C
chengduoZH 已提交
378
  bool own_local_scope_;
379
  DeviceType use_device_;
380
  bool use_all_reduce_;
381
  size_t nranks_;
S
sneaxiy 已提交
382

383
  ir::MemOptVarInfoMapList mem_opt_var_infos_;
384
  ir::GarbageCollectorMap gcs_;
385 386

  details::ParallelSSAGraphExecutor *inference_executor_{nullptr};
Y
Yu Yang 已提交
387 388
};

389 390
bool ParallelExecutorPrivate::IsUseCUDA(DeviceType use_device) {
  return use_device == p::kCUDA;
391 392
}

393 394 395 396 397 398 399 400 401 402
void ParallelExecutorPrivate::SetHasFeed(size_t dev_idx, bool has_feed) {
  if (inference_executor_) {
    inference_executor_->SetHasFeed(dev_idx, has_feed);
  }
}

bool ParallelExecutorPrivate::AllowPartialFeed() const {
  return inference_executor_ && inference_executor_->SupportPartialFeed();
}

403
ir::Graph *ParallelExecutorPrivate::ApplyMemoryOptimizePass(ir::Graph *graph) {
Z
Zeng Jinle 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
  /**
   * NOTE(zengjinle): If BuildStrategy.memory_optimize = None in Python,
   * set BuildStrategy.memory_optimize according to whether gc is enabled.
   * If gc is enabled, BuildStrategy.memory_optimize = False.
   * If gc is disabled, BuildStrategy.memory_optimize = True.
   * This is because gc+memory_optimize is worse than gc only.
   *
   * As an option, users can enable BuildStrategy.memory_optimize forcely
   * by setting True, and disable it forcely by setting False.
   */
  bool is_gc_enabled = (GetEagerDeletionThreshold() >= 0);
  if (!build_strategy_.memory_optimize_) {
    build_strategy_.memory_optimize_ = !is_gc_enabled;
  }

  bool need_mem_opt = build_strategy_.enable_inplace_ ||
420
                      build_strategy_.enable_addto_ ||
Z
Zeng Jinle 已提交
421 422 423 424
                      build_strategy_.memory_optimize_.get() || is_gc_enabled;

  if (!need_mem_opt) return graph;

425 426 427 428 429 430 431 432
  std::vector<ir::LastLiveOpsOfVars> last_live_ops_of_vars;

  auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass");
  ref_cnt_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
  ref_cnt_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
  graph = ref_cnt_pass->Apply(graph);
  VLOG(10) << "ReferenceCountPass Applied";

433 434 435 436
  if (build_strategy_.enable_addto_) {
    auto addto_pass = ir::PassRegistry::Instance().Get("inplace_addto_op_pass");
    addto_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    addto_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
437
    addto_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
438 439 440 441 442
    VLOG(10) << "Start to apply inplace_addto_op_pass";
    graph = addto_pass->Apply(graph);
    VLOG(10) << "inplace_addto_op_pass Applied";
  }

443 444 445 446 447
  if (build_strategy_.enable_inplace_) {
    auto inplace_pass =
        ir::PassRegistry::Instance().Get("buffer_shared_inplace_pass");
    inplace_pass->SetNotOwned(ir::kMemOptVarInfoMapList, &mem_opt_var_infos_);
    inplace_pass->SetNotOwned(ir::kLastLiveOpsOfVars, &last_live_ops_of_vars);
448
    inplace_pass->Set(ir::kUseCuda, new bool(use_device_ == p::kCUDA));
449 450 451
    VLOG(10) << "Start to apply buffer_shared_inplace_pass";
    graph = inplace_pass->Apply(graph);
    VLOG(10) << "buffer_shared_inplace_pass Applied";
452 453
    VLOG(1) << "Inplace strategy is enabled, when "
               "build_strategy.enable_inplace = True";
454 455
  }

456
  if (build_strategy_.memory_optimize_.get()) {
457 458 459 460 461 462
    auto cross_op_memory_reuse_pass = ir::PassRegistry::Instance().Get(
        "buffer_shared_cross_op_memory_reuse_pass");
    cross_op_memory_reuse_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                            &mem_opt_var_infos_);
    cross_op_memory_reuse_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
                                            &last_live_ops_of_vars);
463
    cross_op_memory_reuse_pass->Set(ir::kUseCuda,
464
                                    new bool(use_device_ == p::kCUDA));
465 466 467
    VLOG(10) << "Start to apply buffer_shared_cross_op_memory_reuse_pass";
    graph = cross_op_memory_reuse_pass->Apply(graph);
    VLOG(10) << "buffer_shared_cross_op_memory_reuse_pass Applied";
Z
Zeng Jinle 已提交
468 469 470
    LOG(INFO) << "Cross op memory reuse strategy is enabled, when "
                 "build_strategy.memory_optimize = True or garbage collection "
                 "strategy is disabled, which is not recommended";
471
  }
472

473
  if (!is_gc_enabled) {
474 475 476 477
    return graph;
  }
  size_t max_memory_size = static_cast<size_t>(GetEagerDeletionThreshold());

S
sneaxiy 已提交
478 479 480 481 482
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
483
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
484
    if (platform::is_gpu_place(place)) {
485
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
sneaxiy 已提交
486
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
487
        gc.reset(new UnsafeFastGPUGarbageCollector(
488
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
489
      } else {
S
sneaxiy 已提交
490
        gc.reset(new StreamGarbageCollector(
491
            BOOST_GET_CONST(platform::CUDAPlace, place), max_memory_size));
S
sneaxiy 已提交
492 493
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
494 495 496 497
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use CUDA device since it's not compiled with CUDA,"
          "Please recompile or reinstall Paddle with GPU support."));
S
sneaxiy 已提交
498
#endif
499 500 501 502 503 504 505 506 507
    } else if (platform::is_xpu_place(place)) {
#if defined(PADDLE_WITH_XPU)
      gc.reset(new XPUGarbageCollector(
          BOOST_GET_CONST(platform::XPUPlace, place), max_memory_size));
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
#else
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Paddle can't use XPU device since it's not compiled with XPU,"
          "Please recompile or reinstall Paddle with XPU support."));
S
sneaxiy 已提交
508
#endif
509 510 511 512 513 514 515 516
    } else if (platform::is_cpu_place(place)) {
      gc.reset(new CPUGarbageCollector(
          BOOST_GET_CONST(platform::CPUPlace, place), max_memory_size));
      VLOG(10) << "Created GarbageCollector at " << place;
    } else {
      PADDLE_THROW(platform::errors::PreconditionNotMet(
          "Unsupported place for garbage collection"));
    }
S
sneaxiy 已提交
517
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
518 519
  }

S
sneaxiy 已提交
520
  if (!gcs_.empty()) {
S
sneaxiy 已提交
521 522
    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
523 524
    eager_deletion_pass->SetNotOwned(ir::kMemOptVarInfoMapList,
                                     &mem_opt_var_infos_);
525 526
    eager_deletion_pass->SetNotOwned(ir::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(ir::kLastLiveOpsOfVars,
S
sneaxiy 已提交
527
                                     &last_live_ops_of_vars);
528
    eager_deletion_pass->SetNotOwned(ir::kAllPlaces, &places_);
529
    graph = eager_deletion_pass->Apply(graph);
S
sneaxiy 已提交
530
    VLOG(10) << "EagerDeletionPass Applied";
531 532 533
    VLOG(1) << "Garbage collection strategy is enabled, when "
            << "FLAGS_eager_delete_tensor_gb = "
            << FLAGS_eager_delete_tensor_gb;
S
sneaxiy 已提交
534 535 536 537
  }
  return graph;
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
class ResetHasFeedGuard {
 public:
  explicit ResetHasFeedGuard(ParallelExecutorPrivate *pe_member)
      : pe_member_(pe_member) {}

  ~ResetHasFeedGuard() {
    for (size_t i = 0; i < pe_member_->places_.size(); ++i) {
      pe_member_->SetHasFeed(i, false);
    }
  }

 private:
  ParallelExecutorPrivate *pe_member_;
};

553 554
size_t ParallelExecutor::DeviceCount() const { return member_->places_.size(); }

555 556 557 558
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572
void ParallelExecutor::DropLocalExeScopes() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  if (executor) {
    executor->DropLocalExeScopes();
  }
}

bool ParallelExecutor::NeedCreateLocalExeScope() {
  auto executor = dynamic_cast<details::ScopeBufferedSSAGraphExecutor *>(
      member_->executor_.get());
  return executor && executor->NeedCreateLocalExeScope();
}

573
void InitP2P(const std::vector<platform::Place> &places) {
574
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
  std::call_once(p2p_init_flag, [&]() {
    int count = places.size();
    if (count <= 1) return;

    std::vector<int> devices;
    for (int i = 0; i < count; i++) {
      if (!is_gpu_place(places[i])) return;

      platform::CUDAPlace device =
          BOOST_GET_CONST(platform::CUDAPlace, places[i]);
      devices.push_back(device.GetDeviceId());
    }

    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
592 593 594 595 596
#ifdef PADDLE_WITH_HIP
        hipError_t ret =
            hipDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != hipSuccess || can_acess != 1) {
#else
597 598 599
        cudaError_t ret =
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]);
        if (ret != cudaSuccess || can_acess != 1) {
600
#endif
601 602 603 604
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
          platform::CUDADeviceGuard guard(devices[i]);
605 606 607
#ifdef PADDLE_WITH_HIP
          hipDeviceEnablePeerAccess(devices[j], 0);
#else
608
          cudaDeviceEnablePeerAccess(devices[j], 0);
609
#endif
610 611 612 613 614 615 616 617
        }
      }
    }
    VLOG(1) << "init p2p";
  });
#endif
}

Y
Yan Xu 已提交
618 619 620 621 622 623 624 625
ParallelExecutor::ParallelExecutor(const std::vector<platform::Place> &places,
                                   const std::vector<std::string> &bcast_vars,
                                   const std::string &loss_var_name,
                                   Scope *scope,
                                   const std::vector<Scope *> &local_scopes,
                                   const ExecutionStrategy &exec_strategy,
                                   const BuildStrategy &build_strategy,
                                   ir::Graph *graph)
626
    : member_(new ParallelExecutorPrivate(places, scope)) {
627 628 629
  PADDLE_ENFORCE(places.size() > 0 && !is_npu_place(places[0]),
                 platform::errors::Unavailable(
                     "NPU is not supported in ParallelExecutor"));
630
  InitP2P(places);
631 632
  ir::InitReaderQueueDeviceCount(graph, *(member_->global_scope_),
                                 member_->places_.size());
633 634 635
  // Initialize necessary info of member_ with strategy.
  InitExecutorPrivateMemberInfo(exec_strategy, build_strategy, places.size(),
                                *graph);
Y
Yancey1989 已提交
636

637 638 639 640
  // Step 1. Create local scopes and Clone graph into multi device
  CreateLocalScopes(scope, local_scopes, /*create_new*/ true);
  std::vector<ir::Graph *> graphs = CloneGraphToMultiDevices(graph);
  PrepareNCCLCommunicator(scope);
641

Y
Yan Xu 已提交
642 643
  // broadcast parameters from the 0th device to others:
  auto need_broadcast = [&]() -> bool {
C
chengduo 已提交
644
    if (member_->build_strategy_.num_trainers_ > 1) {
Y
Yan Xu 已提交
645 646 647 648 649 650 651 652 653 654
      // 1. num_tariners would be grater than 1 for nccl distributed training.
      return true;
    } else if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
      // 2. Only one trainer process, but ParallelExecutor hold multiple
      // devices.
      return true;
    }
    return false;
  };
  if (need_broadcast()) {
C
chengduo 已提交
655
    BCastParamsToDevices(bcast_vars, member_->build_strategy_.trainer_id_);
Y
Yu Yang 已提交
656
  }
657

Q
Qiao Longfei 已提交
658 659
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
660 661
  std::vector<ir::Graph *> async_graphs =
      CompileGraphWithBuildStrategy(graph, &graphs, loss_var_name);
662
  graph = member_->ApplyMemoryOptimizePass(graph);
Q
Qiao Longfei 已提交
663 664
  async_graphs[0] = graph;

665 666
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
667
  std::vector<details::VariableInfo> var_infos;
668 669 670
  CreateVariableInfos(&var_infos, graph);
  std::unordered_map<Scope *, Scope *> scope_map =
      CreateLocalExecScopes(member_->local_scopes_, /*create_new*/ true);
671

672 673 674
  // Step 4. Create SSAGraph executor
  std::vector<ir::Graph *> final_graphs =
      CreateSSAGraphExecutor(exec_strategy, &async_graphs, graph);
675

676 677 678 679 680
  VLOG(3) << "use ScopeBufferedSSAGraphExecutor";
  if (!member_->build_strategy_.async_mode_) {
    member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        std::move(var_infos), member_->places_, std::move(member_->executor_)));
681 682
  }

683 684 685
  ResetOpHandleScopeMapOfGraphs(final_graphs, scope_map);
  SetReaderOpDeviceInfoOfGraphs(final_graphs);
}
686

687 688 689 690 691 692 693 694 695
void ParallelExecutor::BCastParamsToDevices(
    const std::vector<std::string> &vars, int trainer_id) const {
  VLOG(3) << "BCastParamsToDevices";
  // the initializing bcast, all vars would be bcast from device(0).
  for (auto &var : vars) {
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
      continue;
    }
696

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    auto &main_tensor = main_var->Get<LoDTensor>();
    if (!main_tensor.IsInitialized()) {
      VLOG(3) << "one in var not inited, return!";
      continue;
    }
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
712

713 714 715 716 717 718 719 720 721 722
        if (i == 0 && trainer_id == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
          buffer = t->mutable_data(place, main_tensor.type());
        }
        buffers.push_back(buffer);
      }
723

724
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
725 726 727 728
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
729
      {
730
        auto *nccl_ctxs = member_->nccl_ctxs_->DefaultFlatCtx();
731 732
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
733
          auto &nccl_ctx = nccl_ctxs->at(member_->places_[i]);
X
Xin Pan 已提交
734 735
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
736
        }
737
        nccl_ctxs->WaitAll();
738
      }
739 740 741 742 743 744
#endif
    } else if (paddle::platform::is_xpu_place(main_tensor.place())) {
#if defined(PADDLE_WITH_XPU_BKCL)
      std::vector<void *> buffers;
      buffers.reserve(member_->places_.size());
      size_t numel = main_tensor.numel();
745 746 747 748 749
      // TODO(liuyuhui): BKCL only support parameters using float type,
      // other parameters need to be strongly converted to float before
      // broadcasting,
      // but broadcast is equivalent to no type of operation, does not affect
      // correctness.
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
      BKCLDataType data_type = BKCL_FLOAT;
      // BKCLDataType data_type = platform::ToBKCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;

        if (i == 0 && trainer_id == 0) {
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
          auto local_scope = member_->local_scopes_[i];
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
          t->Resize(dims);
          buffer = t->mutable_data(place, main_tensor.type());
        }
        buffers.push_back(buffer);
      }

      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        platform::errors::PreconditionNotMet(
                            "variables' buffer size to bcast is %d, which is "
                            "NOT equal to places size %d",
                            buffers.size(), member_->places_.size()));
      {
        auto *bkcl_ctxs = member_->bkcl_ctxs_->DefaultFlatCtx();

        PADDLE_ENFORCE_EQ(
            bkcl_group_start(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_start failed"));
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[i]);
780
          auto broadcast_numel = numel;
781
          if (main_tensor.type() == framework::proto::VarType::INT64) {
782
            broadcast_numel *= 2;
783 784
          }
          PADDLE_ENFORCE_EQ(
785 786
              bkcl_broadcast(bkcl_ctx.comm(), buffers[i], buffers[i],
                             broadcast_numel, data_type, 0, NULL),
787 788 789 790 791 792 793 794 795 796
              BKCL_SUCCESS,
              platform::errors::Unavailable("bkcl_broadcast failed"));
        }
        PADDLE_ENFORCE_EQ(
            bkcl_group_end(), BKCL_SUCCESS,
            platform::errors::Unavailable("bkcl_group_end failed"));
      }
#else
      PADDLE_THROW(
          platform::errors::PreconditionNotMet("Not compiled with BKCL."));
C
chengduoZH 已提交
797
#endif
798 799
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
800
      for (size_t i = 1; i < member_->places_.size(); ++i) {
801 802
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
803

Q
Qiao Longfei 已提交
804
        auto copy_memory = [&] {
805 806 807
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
Q
can run  
Qiao Longfei 已提交
808 809
        };

Q
Qiao Longfei 已提交
810
        auto share_memory = [&] { t->ShareDataWith(main_tensor); };
Q
can run  
Qiao Longfei 已提交
811 812 813 814

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->build_strategy_.async_mode_) {
          share_memory();
815 816
        } else if (member_->use_all_reduce_ ||
                   member_->IsUseCUDA(member_->use_device_) ||
Q
can run  
Qiao Longfei 已提交
817 818
                   var == "@LR_DECAY_COUNTER@") {
          copy_memory();
819
        } else {
Q
can run  
Qiao Longfei 已提交
820
          share_memory();
821
        }
Y
Yu Yang 已提交
822
      }
Y
Stash  
Yu Yang 已提交
823 824
    }
  }
Y
Yu Yang 已提交
825
}
Y
Yu Yang 已提交
826

Z
Zhen Wang 已提交
827 828
FetchResultType ParallelExecutor::Run(
    const std::vector<std::string> &fetch_tensors, bool return_merged) {
829
  VLOG(3) << "enter ParallelExecutor Run";
Y
Yu Yang 已提交
830 831 832
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
833 834
  }
#endif
Y
Yu Yang 已提交
835

X
Xin Pan 已提交
836
  platform::RecordBlock b(0);
837

838 839
  ResetHasFeedGuard reset_has_feed_guard(member_);

840 841
  ir::SkipMemOptVarsGuard guard(&(member_->mem_opt_var_infos_), fetch_tensors,
                                member_->HasGarbageCollectors());
842 843

  VLOG(3) << "ParallelExecutor begin to run member_->executor_->Run";
Z
Zhen Wang 已提交
844
  auto fetch_data = member_->executor_->Run(fetch_tensors, return_merged);
845
  return fetch_data;
Y
Yu Yang 已提交
846
}
Y
Yu Yang 已提交
847

Y
Yu Yang 已提交
848 849
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(tensors.size(), member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          tensors.size(), member_->local_scopes_.size()));
  } else {
    PADDLE_ENFORCE_GE(member_->local_scopes_.size(), tensors.size(),
                      platform::errors::InvalidArgument(
                          "The feed tensor number exceeds the device number"));
  }
Y
Yu Yang 已提交
865

866
  size_t feed_num = 0;
Y
Yu Yang 已提交
867 868
  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
869 870 871 872 873 874
    if (map.empty()) {
      continue;
    }

    member_->SetHasFeed(i);
    ++feed_num;
Y
Yu Yang 已提交
875
    for (auto &pair : map) {
876
      bool is_persistable = member_->IsPersistable(pair.first);
877 878 879
      if (!is_persistable) {
        member_->SetSkipMemoryReuse(i, pair.first);
      }
880 881 882 883 884
      auto *feed_scope = is_persistable ? member_->local_scopes_[i]
                                        : member_->local_exec_scopes_[i];
      auto *feed_var = feed_scope->Var(pair.first);

      auto *trg = feed_var->GetMutable<LoDTensor>();
Y
Yu Yang 已提交
885 886 887 888
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
889 890 891 892 893 894 895 896 897 898 899 900

  if (!member_->AllowPartialFeed()) {
    PADDLE_ENFORCE_EQ(feed_num, member_->local_scopes_.size(),
                      platform::errors::Unimplemented(
                          "The feed data number %d does not match the device "
                          "number %d. If you are using DataLoader to feed "
                          "data, this may be because you set drop_last=False "
                          "in training network. Currently, drop_last=False for "
                          "DataLoader is not supported for training network. "
                          "Please set drop_last=True when defining DataLoader.",
                          feed_num, member_->local_scopes_.size()));
  }
Y
Yu Yang 已提交
901 902 903 904
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
905
  size_t num_places = member_->places_.size();
906 907 908 909 910
  bool allow_partial_feed = member_->AllowPartialFeed();

  size_t persistable_feed_len = -1UL;
  size_t non_persistable_feed_len = -1UL;

911
  for (auto &pair : tensors) {
912 913 914 915
    bool is_persistable = member_->IsPersistable(pair.first);
    VLOG(3) << "Split " << (is_persistable ? "persistable" : "no persistable")
            << " data (" << pair.first << "), dim:" << pair.second.dims()
            << ", place: " << pair.second.place();
Y
Yu Yang 已提交
916
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
917
    bool is_cpu_place = platform::is_cpu_place(member_->places_.front());
918 919
    if (!is_persistable && num_places != lod_tensors.size() &&
        !allow_partial_feed) {
C
chengduo 已提交
920
      auto error_info = string::Sprintf(
921 922 923
          "The number(%d) of samples[%s] of current batch is less than the "
          "count(%d) of devices(%s), currently, it is not allowed. ",
          lod_tensors.size(), pair.first, num_places,
C
chengduo 已提交
924 925 926 927 928 929
          (is_cpu_place ? "CPU" : "GPU"));
      if (is_cpu_place) {
        error_info +=
            "You should set the environment variable CPU_NUM in the system "
            "to determine the number of devices you need.";
      }
930
      PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
931 932 933 934
    } else if (is_persistable) {
      if (lod_tensors.size() == 1) {
        lod_tensors.reserve(num_places);
        auto &tensor = lod_tensors.front();
935 936 937 938 939 940
        PADDLE_ENFORCE_EQ(
            tensor.dims(), pair.second.dims(),
            platform::errors::PreconditionNotMet("The dim doesn't match."));
        PADDLE_ENFORCE_EQ(
            tensor.place(), member_->places_.at(0),
            platform::errors::PreconditionNotMet("The place doesn't match."));
941 942 943 944 945 946
        for (size_t i = 1; i < num_places; ++i) {
          lod_tensors.emplace_back();
          auto &tmp = lod_tensors.back();
          framework::TensorCopy(pair.second, member_->places_.at(i), &tmp);
        }
      }
947
      if (lod_tensors.size() != num_places && !allow_partial_feed) {
948 949 950 951 952 953 954 955 956
        auto error_info = string::Sprintf(
            "The number(%d) of samples[%s] of the current batch does not match "
            "the count(%d) of devices(%s). Because that %s is a persistable "
            "variable, you can feed just one sample, in that case, the input "
            "sample will be copied in %d copies and be sent to different "
            "places separately. If you need that different place has different "
            "value, you should feed %d samples.",
            lod_tensors.size(), pair.first, num_places,
            (is_cpu_place ? "CPU" : "GPU"), pair.first, num_places, num_places);
957
        PADDLE_THROW(platform::errors::PreconditionNotMet(error_info));
958
      }
C
chengduo 已提交
959
    }
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
    if (allow_partial_feed) {
      if (is_persistable) {
        if (persistable_feed_len == -1UL) {
          persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different persistable variables "
                  "should be the same"));
        }
      } else {
        if (non_persistable_feed_len == -1UL) {
          non_persistable_feed_len = lod_tensors.size();
        } else {
          PADDLE_ENFORCE_EQ(
              non_persistable_feed_len, lod_tensors.size(),
              platform::errors::InvalidArgument(
                  "The feeded number of different non-persistable variables "
                  "should be the same"));
        }
      }
    }

    for (size_t j = 0; j < lod_tensors.size(); ++j) {
986 987 988 989 990
      auto *feed_scope = is_persistable ? member_->local_scopes_[j]
                                        : member_->local_exec_scopes_[j];
      auto *feed_var = feed_scope->Var(pair.first);

      auto t = feed_var->GetMutable<LoDTensor>();
991 992
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
993 994
    }
  }
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

  if (allow_partial_feed && persistable_feed_len != -1UL &&
      non_persistable_feed_len != -1UL) {
    VLOG(10) << "Persistable len " << persistable_feed_len;
    VLOG(10) << "Non persistable len " << non_persistable_feed_len;
    PADDLE_ENFORCE_GE(persistable_feed_len, non_persistable_feed_len,
                      platform::errors::InvalidArgument(
                          "The feeded number of persistable variables should "
                          "not be less than non-persistable variables"));
  }

  if (non_persistable_feed_len != -1UL) {
    for (size_t i = 0; i < non_persistable_feed_len; ++i) {
      member_->SetHasFeed(i);
    }
  }
X
Xin Pan 已提交
1011 1012
}

X
Xin Pan 已提交
1013 1014 1015 1016 1017 1018 1019
ParallelExecutor::~ParallelExecutor() {
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
  }
  delete member_;
}

1020
bool ParallelExecutor::EnableParallelGraphExecution(
X
Xin Pan 已提交
1021
    const ir::Graph &graph, const ExecutionStrategy &exec_strategy,
1022
    const BuildStrategy &build_strategy) const {
1023 1024 1025
  if (!FLAGS_enable_parallel_graph) {
    return false;
  }
1026

Y
Yancey1989 已提交
1027
  bool enable_parallel_graph = true;
1028

X
Xin Pan 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
  for (ir::Node *node : graph.Nodes()) {
    if (node->IsVar() && node->Var()) {
      // TODO(Yancey1989): support sparse update in ParallelGraph mode.
      if (node->Var()->GetType() == proto::VarType::SELECTED_ROWS) {
        enable_parallel_graph = false;
        break;
      }
    } else if (node->IsOp() && node->Op()) {
      // TODO(Yancey1989): support pserver mode
      if (node->Op()->Type() == "send" || node->Op()->Type() == "recv") {
        enable_parallel_graph = false;
        break;
      }
1042 1043 1044
    }
  }

1045
  if (!member_->use_all_reduce_ || !member_->IsUseCUDA(member_->use_device_)) {
Y
Yancey1989 已提交
1046
    if (build_strategy.enable_sequential_execution_ ||
1047
        exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental) {
Y
Yancey1989 已提交
1048
      enable_parallel_graph = false;
1049 1050 1051 1052 1053 1054 1055 1056 1057
    }
  }

#ifdef WIN32
  VLOG(1) << "Windows has no support to parallel graph, enable_parallel_graph "
             "would be forced to false.";
  enable_parallel_graph = false;
#endif

Y
Yancey1989 已提交
1058
  return enable_parallel_graph;
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
void ParallelExecutor::InitExecutorPrivateMemberInfo(
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
    size_t device_count, const ir::Graph &graph) {
  member_->use_device_ = exec_strategy.use_device_;
  member_->build_strategy_ = build_strategy;
  member_->use_all_reduce_ = member_->build_strategy_.reduce_ ==
                             BuildStrategy::ReduceStrategy::kAllReduce;
  member_->nranks_ = build_strategy.num_trainers_ * device_count;
  if (!member_->use_all_reduce_ && member_->nranks_ == 1) {
    LOG(INFO) << "If you set build_strategy.reduce with 'Reduce',"
                 "the number of places should be greater than 1.";
    member_->build_strategy_.reduce_ =
        BuildStrategy::ReduceStrategy::kAllReduce;
    member_->use_all_reduce_ = true;
  }
#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && defined(_WIN32)
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
        device_count, 1,
        platform::errors::Unavailable("Windows can support Single GPU only."));
  }
#endif

#if (defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)) && \
    (!defined(PADDLE_WITH_NCCL) && !defined(PADDLE_WITH_RCCL))
  if (member_->IsUseCUDA(member_->use_device_)) {
    PADDLE_ENFORCE_EQ(
        device_count, 1,
        platform::errors::PermissionDenied(
            "Your machine has multiple cards, "
            "but the WITH_NCCL option is not turned on during compilation, "
            "and you cannot use multi-card training or prediction. "
            "Please recompile and turn on the WITH_NCCL option."));
  }
#endif

  std::string device_name;
  if (member_->use_device_ == p::kCPU) {
    device_name = "CPU";
  } else if (member_->use_device_ == p::kCUDA) {
    device_name = "CUDA";
  } else {
    device_name = "XPU";
  }

  VLOG(1) << string::Sprintf(
      "The Program will be executed on %s using ParallelExecutor, %lu "
      "cards are used, so %lu programs are executed in parallel.",
      device_name, device_count, device_count);

  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  member_->build_strategy_.enable_parallel_graph_ =
      EnableParallelGraphExecution(graph, exec_strategy,
                                   member_->build_strategy_);
  if (member_->build_strategy_.enable_parallel_graph_) {
    LOG(INFO) << "The Executor would execute the graph by ParallelGraph "
                 "Execution which can get better performance,"
              << "you can force it off by env FLAGS_enable_parallel_graph=0";
  }
}

void ParallelExecutor::CreateLocalScopes(
    Scope *global_scope, const std::vector<Scope *> &local_scopes,
    bool create_new) {
  if (local_scopes.empty()) {
    member_->own_local_scope_ = true;
    member_->local_scopes_.emplace_back(global_scope);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      member_->local_scopes_.emplace_back(&global_scope->NewScope());
    }
  } else {
    member_->own_local_scope_ = false;
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size(),
                      platform::errors::PreconditionNotMet(
                          "member_->places_.size() = %d is not equal to "
                          "local_scopes.size() = %d",
                          member_->places_.size(), local_scopes.size()));
    for (size_t i = 0; i < member_->places_.size(); ++i) {
      if (create_new) {
        member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
      } else {
        // Use local scopes directly
        member_->local_scopes_.emplace_back(local_scopes[i]);
      }
    }
  }
}

std::unordered_map<Scope *, Scope *> ParallelExecutor::CreateLocalExecScopes(
    const std::vector<Scope *> &local_scopes, bool create_new) {
  std::unordered_map<Scope *, Scope *> scope_map;

  for (auto *scope : local_scopes) {
    Scope *local_exec_scope = scope;
    if (create_new) {
      local_exec_scope = &scope->NewScope();
    }
    member_->local_exec_scopes_.emplace_back(local_exec_scope);
    scope_map.emplace(scope, local_exec_scope);
  }

  PADDLE_ENFORCE_EQ(
      member_->local_scopes_.size(), member_->local_exec_scopes_.size(),
      platform::errors::PreconditionNotMet(
          "member_->local_scopes_.size() = %d is not equal to "
          "member_->local_exec_scopes_.size() = %d",
          member_->local_scopes_.size(), member_->local_exec_scopes_.size()));

  return scope_map;
}

std::vector<ir::Graph *> ParallelExecutor::CloneGraphToMultiDevices(
    ir::Graph *graph) {
  std::vector<ir::Graph *> graphs;
  if (member_->build_strategy_.async_mode_) {
    PADDLE_ENFORCE_EQ(member_->IsUseCUDA(member_->use_device_), false,
                      platform::errors::Unavailable(
                          "gpu mode does not support async_mode_ now!"));
    graphs.push_back(graph);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
      auto *tmp_graph = new ir::Graph(graph->OriginProgram());
      async_graphs_.emplace_back(tmp_graph);
      graphs.push_back(tmp_graph);
    }
  }

  return graphs;
}

void ParallelExecutor::PrepareNCCLCommunicator(Scope *global_scope) {
  if (member_->IsUseCUDA(member_->use_device_) && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
    member_->InitOrGetNCCLCommunicator(global_scope, &member_->build_strategy_);

    // Initialize device context's nccl comm, will be used by normal
    // Operators like sync_batch_norm, and collective ops.
    // NOTE: more than one ParallelExecutor with same place, the nccl comm will
    // be rewrite and there will be some problem.
    // NOTE: NCCL group-calls and non-group-calls can not use the same
    // NCCL communicator, so for ParallelGraph and Multi-Process mode, re-use
    // same communicators.
    auto *nccl_ctxs = member_->nccl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &nccl_ctx = nccl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_nccl_comm(nccl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
  }
  if (member_->use_device_ == p::kXPU && member_->nranks_ > 1) {
#if defined(PADDLE_WITH_XPU_BKCL)
    member_->InitOrGetBKCLCommunicator(global_scope, member_->build_strategy_);

    auto *bkcl_ctxs = member_->bkcl_ctxs_->GetSyncBatchNormCtx(
        global_scope, member_->places_);
    auto &pool = platform::DeviceContextPool::Instance();
    for (size_t dev_id = 0; dev_id < member_->places_.size(); ++dev_id) {
      auto *dev_ctx = static_cast<platform::XPUDeviceContext *>(
          pool.Get(member_->places_[dev_id]));
      auto &bkcl_ctx = bkcl_ctxs->at(member_->places_[dev_id]);
      dev_ctx->set_bkcl_context(bkcl_ctx.comm());
    }
#else
    PADDLE_THROW(
        platform::errors::PreconditionNotMet("Not compiled with XPU."));
#endif
  }
}

std::vector<ir::Graph *> ParallelExecutor::CompileGraphWithBuildStrategy(
    ir::Graph *graph, std::vector<ir::Graph *> *device_graphs,
    const std::string &loss_var_name) {
  auto device_count = member_->places_.size();
  std::vector<ir::Graph *> async_graphs(device_count);

  auto &graphs = *device_graphs;
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
  if (member_->build_strategy_.async_mode_) {
    PADDLE_ENFORCE_EQ(graphs.size(), device_count,
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
                          device_count, graphs.size()));
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_,
        member_->nccl_ctxs_);
    for (size_t i = 1; i < device_count; ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_,
          member_->nccl_ctxs_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_, member_->nccl_ctxs_);
  }
#elif defined(PADDLE_WITH_XPU_BKCL)
  if (member_->build_strategy_.async_mode_) {
    PADDLE_ENFORCE_EQ(graphs.size(), device_count,
                      platform::errors::PreconditionNotMet(
                          "graphs.size() shoule be %d, but received %d",
                          device_count, graphs.size()));
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_,
        member_->bkcl_ctxs_);
    for (size_t i = 1; i < device_count; ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_,
          member_->bkcl_ctxs_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_, member_->bkcl_ctxs_);
  }
#else
  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use local async mode";
    graph = member_->build_strategy_.Apply(
        graph, {member_->places_[0]}, loss_var_name,
        {member_->local_scopes_[0]}, 1, member_->use_device_);
    for (size_t i = 1; i < device_count; ++i) {
      graphs[i] = member_->build_strategy_.Apply(
          graphs[i], {member_->places_[i]}, loss_var_name,
          {member_->local_scopes_[i]}, 1, member_->use_device_);
      async_graphs[i] = graphs[i];
    }
  } else {
    graph = member_->build_strategy_.Apply(
        graph, member_->places_, loss_var_name, member_->local_scopes_,
        member_->nranks_, member_->use_device_);
  }
#endif

  return async_graphs;
}

void ParallelExecutor::CreateVariableInfos(
    std::vector<details::VariableInfo> *var_infos, ir::Graph *graph) {
  PADDLE_ENFORCE_EQ(
      var_infos->size(), 0,
      platform::errors::PreconditionNotMet(
          "var_infos->size() shoule be 0, but received %d", var_infos->size()));
  PADDLE_ENFORCE_EQ(
      member_->is_persistable_.size(), 0,
      platform::errors::PreconditionNotMet(
          "member_->is_persistable_.size() shoule be 0, but received %d",
          member_->is_persistable_.size()));
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos->emplace_back();
      var_infos->back().name_ = node->Var()->Name();
      var_infos->back().type_ = node->Var()->GetType();
      var_infos->back().persistable_ = node->Var()->Persistable();

      member_->is_persistable_.emplace(node->Var()->Name(),
                                       node->Var()->Persistable());
    }
  }

  if (graph->Has(details::kFusedVars)) {
    auto &fused_vars = graph->Get<details::FusedVars>(details::kFusedVars);
    for (auto &fused_var : fused_vars) {
      var_infos->emplace_back();
      var_infos->back() = fused_var.second;

      member_->is_persistable_.emplace(fused_var.first,
                                       fused_var.second.persistable_);
    }
  }
}

std::vector<ir::Graph *> ParallelExecutor::CreateSSAGraphExecutor(
    const ExecutionStrategy &exec_strategy,
    std::vector<ir::Graph *> *async_graphs, ir::Graph *graph) {
  std::vector<ir::Graph *> final_graphs;

  if (member_->build_strategy_.async_mode_) {
    VLOG(3) << "use AsyncSSAGraphExecutor";
    member_->executor_.reset(new details::AsyncSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, *async_graphs));
    final_graphs = *async_graphs;
  } else if (member_->build_strategy_.enable_parallel_graph_) {
    VLOG(3) << "use ParallelSSAGraphExecutor";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    // TODO(Yancey1989): Remove passing in the main_program when
    // allreduce_seq_pass doesn't need it as the attr.
    bool is_inference = details::IsDataParallelInferenceGraph(*graph);
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);

    auto *pg_exe = new details::ParallelSSAGraphExecutor(
        exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
        member_->places_, graph);
    final_graphs = pg_exe->Graphs();
    member_->executor_.reset(pg_exe);

    if (is_inference && member_->places_.size() > 1) {
      member_->inference_executor_ = pg_exe;
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
    }
#else
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Paddle should be compiled with CUDA for ParallelGraph Execution."));
#endif
  } else {
    bool has_drop_last_read_op = details::HasDropLastReadOp(*graph);
    auto possible_inference_graphs =
        details::TrySeparateToMultipleSingleDeviceGraphs(graph);
    if (!possible_inference_graphs.empty()) {
      VLOG(5) << "Use ParallelSSAGraphExecutor in inference phase";
      auto *pg_exe = new details::ParallelSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
          member_->places_, std::move(possible_inference_graphs));
      if (!has_drop_last_read_op) {
        VLOG(5) << "Enable partial feed support in inference phase";
        pg_exe->EnablePartialFeedSupport();
      }
      final_graphs = pg_exe->Graphs();
      member_->executor_.reset(pg_exe);
      member_->inference_executor_ = pg_exe;
    } else {
      LOG_IF(WARNING, details::HasKeepLastReadOp(*graph))
          << "drop_last=False for DataLoader is not supported in training "
             "network. It is automatically turned to drop_last=True.";
      if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
        VLOG(3) << "use ThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      } else {
        VLOG(3) << "use FastThreadedSSAGraphExecutor";
        member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
            exec_strategy, member_->local_scopes_, member_->local_exec_scopes_,
            member_->places_, graph));
      }
      final_graphs.emplace_back(graph);
    }
  }
  return final_graphs;
}

void ParallelExecutor::ResetOpHandleScopeMapOfGraphs(
    const std::vector<ir::Graph *> &final_graphs,
    const std::unordered_map<Scope *, Scope *> &scope_map) {
  PADDLE_ENFORCE_GE(
      final_graphs.size(), 1,
      platform::errors::PreconditionNotMet(
          "final_graphs shoule contain at least one graph, but received %d",
          final_graphs.size()));

  PADDLE_ENFORCE_GT(scope_map.size(), 0,
                    platform::errors::PreconditionNotMet(
                        "scope_map shoule contain at least one "
                        "element, but received %d",
                        scope_map.size()));
  for (auto *g : final_graphs) {
    auto ops = ir::FilterByNodeWrapper<details::OpHandleBase>(*g);
    for (auto *op : ops) {
      op->SetLocalExecScopes(scope_map);
    }
  }
}

void ParallelExecutor::SetReaderOpDeviceInfoOfGraphs(
    const std::vector<ir::Graph *> &final_graphs) {
  if (final_graphs.size() == 1) {
    ir::SetReaderOpDeviceInfo(final_graphs[0], member_->places_.size());
  } else {
    for (size_t i = 0; i < final_graphs.size(); ++i) {
      ir::SetReaderOpDeviceInfo(final_graphs[i], member_->places_.size(), i);
    }
  }
}

1454 1455 1456 1457
const ir::Graph &ParallelExecutor::Graph() const {
  return member_->executor_->Graph();
}

Y
Yu Yang 已提交
1458
}  // namespace framework
Y
Yang Yang 已提交
1459
}  // namespace paddle
S
sneaxiy 已提交
1460

S
sneaxiy 已提交
1461
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
1462
USE_PASS(eager_deletion_pass);
1463
USE_PASS(buffer_shared_inplace_pass);
1464
USE_PASS(buffer_shared_cross_op_memory_reuse_pass);
1465
USE_PASS(inplace_addto_op_pass);