evaluator.py 7.3 KB
Newer Older
D
Dong Zhihong 已提交
1
import numpy as np
武毅 已提交
2

3 4 5
import layers
from framework import Program, unique_name, Variable
from layer_helper import LayerHelper
武毅 已提交
6

G
guosheng 已提交
7
__all__ = ['Accuracy', 'ChunkEvaluator']
Y
Yu Yang 已提交
8 9 10


def _clone_var_(block, var):
D
Dong Zhihong 已提交
11 12 13 14
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
15
        dtype=var.dtype,
D
Dong Zhihong 已提交
16 17 18 19 20
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


D
Dong Zhihong 已提交
21 22
class Evaluator(object):
    """
Y
Yu Yang 已提交
23 24 25 26 27 28
    Base Class for all evaluators
    
    Args:
        name(str): The name of evaluator. such as, "accuracy". Used for generate 
            temporary variable name.
        main_program(Program, optional): The evaluator should be added to this 
Y
Yu Yang 已提交
29
            main_program. Default default_main_program()
Y
Yu Yang 已提交
30
        startup_program(Program, optional):The parameter should be added to this 
Y
Yu Yang 已提交
31
            startup_program. Default default_startup_program()
Y
Yu Yang 已提交
32 33 34 35 36 37
            
    Attributes:
        states(list): The list of state variables. states will be reset to zero 
            when `reset` is invoked.
        metrics(list): The list of metrics variables. They will be calculate 
            every mini-batch
D
Dong Zhihong 已提交
38
    """
武毅 已提交
39

D
Dong Zhihong 已提交
40
    def __init__(self, name, **kwargs):
Y
Yu Yang 已提交
41 42 43 44 45
        self.states = []
        self.metrics = []
        self.helper = LayerHelper(name, **kwargs)

    def reset(self, executor, reset_program=None):
D
Dong Zhihong 已提交
46
        """
Y
Yu Yang 已提交
47
        reset metric states at the begin of each pass/user specified batch
D
Dong Zhihong 已提交
48
        """
Y
Yu Yang 已提交
49 50 51 52 53 54 55 56 57 58 59 60
        if reset_program is None:
            reset_program = Program()

        for var in self.states:
            assert isinstance(var, Variable)
            g_var = _clone_var_(reset_program.current_block(), var)
            layers.fill_constant(
                shape=g_var.shape,
                value=0.0,
                dtype=g_var.dtype,
                out=g_var,
                main_program=reset_program)
D
Dong Zhihong 已提交
61

Y
Yu Yang 已提交
62
        executor.run(reset_program)
63

Y
Yu Yang 已提交
64
    def eval(self, executor, eval_program=None):
D
Dong Zhihong 已提交
65
        """
Y
Yu Yang 已提交
66
        Evaluate the statistics merged by multiple mini-batches.
D
Dong Zhihong 已提交
67 68
        """
        raise NotImplementedError()
D
Dong Zhihong 已提交
69

Y
Yu Yang 已提交
70
    def create_state(self, suffix, dtype, shape):
武毅 已提交
71
        """
Y
Yu Yang 已提交
72 73 74 75 76 77 78 79 80 81
        Create state variable. 
        
        NOTE: It is not a public API.
        
        Args:
            suffix(str): the state suffix. 
            dtype(str|core.DataType): the state data type 
            shape(tuple|list): the shape of state 

        Returns: State variable
武毅 已提交
82

D
Dong Zhihong 已提交
83
        """
Y
Yu Yang 已提交
84 85 86 87 88 89 90
        state = self.helper.create_variable(
            name="_".join([unique_name(self.helper.name), suffix]),
            persistable=True,
            dtype=dtype,
            shape=shape)
        self.states.append(state)
        return state
D
Dong Zhihong 已提交
91

D
Dong Zhihong 已提交
92 93

class Accuracy(Evaluator):
D
Dong Zhihong 已提交
94
    """
Y
Yu Yang 已提交
95
    Average Accuracy for multiple mini-batches.
D
Dong Zhihong 已提交
96 97
    """

Y
Yu Yang 已提交
98
    def __init__(self, input, label, k=1, **kwargs):
D
Dong Zhihong 已提交
99
        super(Accuracy, self).__init__("accuracy", **kwargs)
Y
Yu Yang 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

        self.total = self.create_state(dtype='int64', shape=[1], suffix='total')
        self.correct = self.create_state(
            dtype='int64', shape=[1], suffix='correct')
        kwargs = {'main_program': main_program}
        total = self.helper.create_tmp_variable(dtype='int')
        correct = self.helper.create_tmp_variable(dtype='int')
        acc = layers.accuracy(
            input=input,
            label=label,
            k=k,
            total=total,
            correct=correct,
            **kwargs)
        total = layers.cast(x=total, dtype='int64', **kwargs)
        correct = layers.cast(x=correct, dtype='int64', **kwargs)
        layers.sums(input=[self.total, total], out=self.total, **kwargs)
        layers.sums(input=[self.correct, correct], out=self.correct, **kwargs)

        self.metrics.append(acc)
D
Dong Zhihong 已提交
123

D
Dong Zhihong 已提交
124
    def eval(self, executor, eval_program=None):
Y
Yu Yang 已提交
125
        if eval_program is None:
D
Dong Zhihong 已提交
126
            eval_program = Program()
Y
Yu Yang 已提交
127 128 129 130 131 132 133 134
        block = eval_program.current_block()
        kwargs = {'main_program': eval_program}
        total = _clone_var_(block, self.total)
        correct = _clone_var_(block, self.correct)
        total = layers.cast(total, dtype='float32', **kwargs)
        correct = layers.cast(correct, dtype='float32', **kwargs)
        out = layers.elementwise_div(x=correct, y=total, **kwargs)
        return np.array(executor.run(eval_program, fetch_list=[out])[0])
G
guosheng 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205


class ChunkEvaluator(Evaluator):
    """
    Accumulate counter numbers output by chunk_eval from mini-batches and 
    compute the precision recall and F1-score using the accumulated counter 
    numbers.
    """

    def __init__(self,
                 input,
                 label,
                 chunk_scheme,
                 num_chunk_types,
                 excluded_chunk_types=None,
                 **kwargs):
        super(ChunkEvaluator, self).__init__("chunk_eval", **kwargs)
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

        self.num_infer_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_infer_chunks')
        self.num_label_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_label_chunks')
        self.num_correct_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_correct_chunks')
        kwargs = {'main_program': main_program}
        precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
            input=input,
            label=label,
            chunk_scheme=chunk_scheme,
            num_chunk_types=num_chunk_types,
            excluded_chunk_types=excluded_chunk_types,
            **kwargs)
        layers.sums(
            input=[self.num_infer_chunks, num_infer_chunks],
            out=self.num_infer_chunks,
            **kwargs)
        layers.sums(
            input=[self.num_label_chunks, num_label_chunks],
            out=self.num_label_chunks,
            **kwargs)
        layers.sums(
            input=[self.num_correct_chunks, num_correct_chunks],
            out=self.num_correct_chunks,
            **kwargs)

        self.metrics.extend([precision, recall, f1_score])

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        kwargs = {'main_program': eval_program}
        num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
            eval_program,
            fetch_list=[_clone_var_(block, state) for state in self.states])
        num_infer_chunks = num_infer_chunks[0]
        num_label_chunks = num_label_chunks[0]
        num_correct_chunks = num_correct_chunks[0]
        precision = float(
            num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
        recall = float(
            num_correct_chunks) / num_label_chunks if num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if num_correct_chunks else 0
        return np.array(
            [precision], dtype='float32'), np.array(
                [recall], dtype='float32'), np.array(
                    [f1_score], dtype='float32')