test_nn_grad.py 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

20
import paddle
21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
import gradient_checker
from decorator_helper import prog_scope
26
paddle.enable_static()
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


class TestMulGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        prog = fluid.Program()
        with fluid.program_guard(prog):
            x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x')
            y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y')
            z = layers.mul(x=x, y=y)
            gradient_checker.grad_check([x, y], z, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
class TestSliceOpDoubleGradCheck(unittest.TestCase):
    def func(self, place):
        self.config()

        out = fluid.layers.slice(
            self.inputs, axes=self.axes, starts=self.starts, ends=self.ends)
        gradient_checker.double_grad_check(
            [self.inputs], out, x_init=self.x_arr, place=place)

    def config(self):
        self.starts = [1, 0, -1]
        self.ends = [3, 3, 6]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 4, 5, 2]).astype("float64")
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 4, 5, 2], name='x')

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            self.func(place)


class TestSliceOpDoubleGradCheckCase3(TestSliceOpDoubleGradCheck):
    def config(self):
        self.starts = [1, -1, 1]
        self.ends = [3, 3, 3]
        self.axes = [0, 1, 2]
        self.x_arr = np.random.random([3, 3, 3]).astype("float64")
        self.inputs = layers.create_parameter(
            dtype="float64", shape=[3, 3, 3], name='x3')


L
lvmengsi 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_mean(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class TestReduceSumWithDimDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [7, 11]
        eps = 0.05
        dtype = np.float64

        x = layers.data('x', shape, False, dtype)
        x.persistable = True
        y = layers.reduce_sum(x, dim=0)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


128 129 130
class TestMulDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
131
        # the shape of input variable should be clearly specified, not inlcude -1.
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        x_shape = [7, 11]
        y_shape = [11, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        y = layers.data('y', y_shape, False, dtype)
        y.persistable = True
        out = layers.mul(x, y)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMatmulDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        eps = 0.005
        x_shapes = [[2], [2, 3], [2, 4, 3], [2, 3, 4, 5], [2, 3, 4]]
        y_shapes = [[2], [3, 2], [2, 4, 5], [2, 3, 3, 5], [4, 3]]
        transpose_xs = [False, True, True, False, False]
        transpose_ys = [False, True, False, True, False]
164 165 166 167
        dtype = np.float64
        typename = "float64"
        for i, (x_shape, y_shape, transpose_x, transpose_y) \
            in enumerate(zip(x_shapes, y_shapes, transpose_xs, transpose_ys)):
168 169 170 171 172 173 174 175 176 177 178
            x = layers.create_parameter(
                dtype=typename, shape=x_shape, name='x{}'.format(i))
            y = layers.create_parameter(
                dtype=typename, shape=y_shape, name='y{}'.format(i))
            out = layers.matmul(
                x, y, transpose_x, transpose_y, name='out{}'.format(i))

            x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
            y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype)
            gradient_checker.double_grad_check(
                [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps)
179 180 181 182 183 184 185 186 187

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


188
class TestReshapeDoubleGradCheck(unittest.TestCase):
L
lilong12 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        expand_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.expand(x, expand_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandDoubleGradCheck(unittest.TestCase):
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        new_shape = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = layers.reshape(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
class TestTileDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [3, 12]
        repeat_times = [4, 9]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.tile(x, repeat_times)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestExpandV2DoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [1, 12]
        new_shape = [4, 12]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.expand(x, new_shape)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
class TestSqueezeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [1, 3, 1, 40]
        axes = [0, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.squeeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestUnsqueezeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        axes = [1, 2]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.unsqueeze(x, axes)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
class TestTransposeDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [3, 40]
        perm = [1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeDoubleGradCheckCase1(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        perm = [0, 2, 3, 1]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.transpose(x, perm)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
class TestConstantPadDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        eps = 0.005
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x], out, x_init=x_arr, place=place, eps=eps)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestConstantPadDoubleGradCheckCase1(TestConstantPadDoubleGradCheck):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 0, 1, 0, 1, 0, 1, 0]
        dtype = np.float64

        x = layers.data('x', x_shape, False, dtype)
        x.persistable = True
        out = paddle.nn.functional.pad(x, pad)
        x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check([x], out, x_init=x_arr, place=place)


class TestConcatDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        x_shape = [2, 3, 4, 5]
        pad = [1, 1, 1, 1]
        dtype = np.float64

        x1 = layers.data('x', x_shape, False, dtype)
        x2 = layers.data('x', x_shape, False, dtype)
        x1.persistable = True
        x2.persistable = True
        out = paddle.concat([x1, x2], axis=0)
        x2_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)
        x1_arr = np.random.uniform(-1, 1, x_shape).astype(dtype)

        gradient_checker.double_grad_check(
            [x1, x2], out, x_init=[x1_arr, x2_arr], place=place)

    def test_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


441 442
if __name__ == "__main__":
    unittest.main()