config_parser.py 157.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
Q
qijun 已提交
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
Z
zhangjinchao01 已提交
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
Q
qijun 已提交
106
print = logger.info
Z
zhangjinchao01 已提交
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

Q
qijun 已提交
111

Z
zhangjinchao01 已提交
112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
Q
qijun 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
X
xuwei06 已提交
129
        g_parameter_initializer_map={},
Q
qijun 已提交
130
        g_extended_config_funcs={},
Z
zhangjinchao01 已提交
131 132

        # store command args of paddle_trainer
Q
qijun 已提交
133
        g_command_config_args={},
Z
zhangjinchao01 已提交
134 135

        # Used for PyDataProvider to avoid duplicate module name
Q
qijun 已提交
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
Z
zhangjinchao01 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

Q
qijun 已提交
158

Z
zhangjinchao01 已提交
159 160
g_config_funcs = {}

Q
qijun 已提交
161

Z
zhangjinchao01 已提交
162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

Q
qijun 已提交
167

Z
zhangjinchao01 已提交
168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

Q
qijun 已提交
173

Z
zhangjinchao01 已提交
174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
Q
qijun 已提交
180

Z
zhangjinchao01 已提交
181 182
    return wrap

Q
qijun 已提交
183

Z
zhangjinchao01 已提交
184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

Q
qijun 已提交
187

Z
zhangjinchao01 已提交
188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

Q
qijun 已提交
191

Z
zhangjinchao01 已提交
192 193 194
def default(x, default_value):
    return default_value if x is None else x

Q
qijun 已提交
195

Z
zhangjinchao01 已提交
196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

Q
qijun 已提交
202

Z
zhangjinchao01 已提交
203 204
# functions available in config file

Q
qijun 已提交
205

Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

Q
qijun 已提交
224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

Z
zhangjinchao01 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

Q
qijun 已提交
253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
Z
zhangjinchao01 已提交
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

Q
qijun 已提交
263

Z
zhangjinchao01 已提交
264
@config_func
Q
qijun 已提交
265
def SubModelEnd(name=None):
Z
zhangjinchao01 已提交
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
Q
qijun 已提交
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
Z
zhangjinchao01 已提交
269
    if name is not None:
Q
qijun 已提交
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
Z
zhangjinchao01 已提交
273 274 275

    g_current_submodel = g_submodel_stack.pop()

Q
qijun 已提交
276

Z
zhangjinchao01 已提交
277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
Z
zhangjinchao01 已提交
281 282
    return name + suffix

Q
qijun 已提交
283

Z
zhangjinchao01 已提交
284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

Q
qijun 已提交
287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
Z
zhangjinchao01 已提交
289 290
    global g_current_submodel
    global g_add_submodel_suffix
Q
qijun 已提交
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
Z
zhangjinchao01 已提交
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

Q
qijun 已提交
298

Z
zhangjinchao01 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
Z
zhangjinchao01 已提交
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
Z
zhangjinchao01 已提交
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

Z
zhangjinchao01 已提交
338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341 342
        ScatterAgentLayer(
            name=name, size=layer.size, width=layer.width, height=layer.height)
343

Z
zhangjinchao01 已提交
344 345 346 347
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

Q
qijun 已提交
348

Z
zhangjinchao01 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
Q
qijun 已提交
362
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
Z
zhangjinchao01 已提交
363 364 365 366 367 368 369 370
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
371
                             target_inlinkname="",
Z
zhangjinchao01 已提交
372
                             seq_reversed=False):
373
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
Z
zhangjinchao01 已提交
374 375 376 377 378
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
Q
qijun 已提交
379 380 381 382 383
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
Z
zhangjinchao01 已提交
384 385 386 387 388 389 390


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
Q
qijun 已提交
391
    for pair in g_current_submodel.memories:  #check exist
Z
zhangjinchao01 已提交
392
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
393 394
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
Z
zhangjinchao01 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

Q
qijun 已提交
411

Z
zhangjinchao01 已提交
412 413 414 415 416 417
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

Q
qijun 已提交
418

Z
zhangjinchao01 已提交
419 420
@config_class
class Bias(Cfg):
X
xuwei06 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
Z
zhangjinchao01 已提交
437 438
        self.add_keys(locals())

Q
qijun 已提交
439

Z
zhangjinchao01 已提交
440 441 442 443 444 445 446
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
X
xuwei06 已提交
447
            initializer=None,
Z
zhangjinchao01 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
L
liaogang 已提交
461
            bilinear_interp=None,
Z
zhangjinchao01 已提交
462 463 464 465
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
466
            maxout=None,
Q
qijun 已提交
467
            spp=None,
D
dangqingqing 已提交
468
            pad=None,
Z
zhangjinchao01 已提交
469 470 471 472 473
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
474
            input_layer_argument=None,
D
dangqingqing 已提交
475 476 477 478 479
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
Z
zhangjinchao01 已提交
480
        self.add_keys(locals())
D
dangqingqing 已提交
481 482 483
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
Z
zhangjinchao01 已提交
484

Q
qijun 已提交
485

Z
zhangjinchao01 已提交
486 487 488
# Define a projection for iexed layer
@config_class
class Projection(Input):
Q
qijun 已提交
489 490
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
491 492 493
    def __init__(
            self,
            input_layer_name,
Q
qijun 已提交
494
            size=0,  # projection output size
Z
zhangjinchao01 已提交
495 496 497 498 499 500 501 502 503
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
X
xuwei06 已提交
504
            initializer=None,
Z
zhangjinchao01 已提交
505 506 507 508 509 510 511 512 513 514
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
Q
qijun 已提交
515
            input_layer_argument=None, ):
Z
zhangjinchao01 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
Q
qijun 已提交
529

Z
zhangjinchao01 已提交
530 531
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
Q
qijun 已提交
532

Z
zhangjinchao01 已提交
533 534 535 536 537 538 539 540 541 542
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
543

Z
zhangjinchao01 已提交
544 545
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
546

Z
zhangjinchao01 已提交
547 548 549
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
550

Z
zhangjinchao01 已提交
551 552 553 554 555 556
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

Q
qijun 已提交
557 558 559
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
Z
zhangjinchao01 已提交
560 561
        self.proj_conf.offset = offset

562 563 564
    def calc_output_size(self, input_layer_config):
        return 0  # depends on the outside MixedLayer

Z
zhangjinchao01 已提交
565 566
    def calc_parameter_size(self, input_size, output_size):
        return 0
Q
qijun 已提交
567

Z
zhangjinchao01 已提交
568 569 570
    def calc_parameter_dims(self, input_size, output_size):
        return []

Q
qijun 已提交
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


Z
zhangjinchao01 已提交
601 602 603 604 605 606 607
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
Q
qijun 已提交
608

Z
zhangjinchao01 已提交
609 610
    def calc_parameter_size(self, input_size, output_size):
        return output_size
Q
qijun 已提交
611

Z
zhangjinchao01 已提交
612 613 614
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

L
Luo Tao 已提交
615

X
xuwei06 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

Q
qijun 已提交
630

Z
zhangjinchao01 已提交
631 632 633 634 635 636
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
637

Z
zhangjinchao01 已提交
638 639 640
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
641

Z
zhangjinchao01 已提交
642 643 644 645 646 647
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
648

Z
zhangjinchao01 已提交
649 650 651
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

Q
qijun 已提交
652

Z
zhangjinchao01 已提交
653 654 655 656 657 658
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
Q
qijun 已提交
659

Z
zhangjinchao01 已提交
660 661 662
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

Q
qijun 已提交
663

Z
zhangjinchao01 已提交
664 665 666 667
@config_class
class ContextProjection(Projection):
    type = 'context'

Q
qijun 已提交
668 669
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
Z
zhangjinchao01 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


693
@config_class
694
class ConvBaseProjection(Projection):
Q
qijun 已提交
695 696 697 698 699
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
700
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
701 702 703 704 705 706 707 708 709 710 711 712

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
713 714
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
715 716 717 718 719 720 721

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

Q
qijun 已提交
722

723 724 725 726 727 728 729 730 731
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
732 733
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
734

735
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
751 752
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
753 754 755

        parse_conv(
            conv_conf,
756
            self.input_layer_name,
757 758 759 760 761 762 763 764
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


Z
zhangjinchao01 已提交
765 766 767
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
Q
qijun 已提交
768 769
    type = None  # subclass should set it correctly

Z
zhangjinchao01 已提交
770 771
    def __init__(
            self,
Q
qijun 已提交
772
            input_layer_names, ):
Z
zhangjinchao01 已提交
773 774 775 776 777 778 779 780 781 782
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

Q
qijun 已提交
783

Z
zhangjinchao01 已提交
784 785 786
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
Q
qijun 已提交
787 788 789

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
Q
qijun 已提交
808 809 810 811 812 813 814

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
Z
zhangjinchao01 已提交
815 816 817
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

818 819
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
Q
qijun 已提交
820
                   self.operator_conf.conv_conf, num_filters)
L
Luo Tao 已提交
821 822 823
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
Z
zhangjinchao01 已提交
824 825 826

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

827 828
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
Z
zhangjinchao01 已提交
829 830


831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


Z
zhangjinchao01 已提交
861 862 863
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
Q
qijun 已提交
864 865 866 867 868 869 870 871 872 873 874 875
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
W
wanghaoshuang 已提交
876 877 878
                 stride_y=None,
                 dilation=None,
                 dilation_y=None):
Z
zhangjinchao01 已提交
879 880
        self.add_keys(locals())
        if filter_size_y is None:
Q
qijun 已提交
881
            self.filter_size_y = filter_size
Z
zhangjinchao01 已提交
882
        if padding_y is None:
Q
qijun 已提交
883
            self.padding_y = padding
884 885
        if dilation_y is None:
            self.dilation_y = dilation
Z
zhangjinchao01 已提交
886
        if stride_y is None:
Q
qijun 已提交
887
            self.stride_y = stride
Z
zhangjinchao01 已提交
888
        if output_x is not None:
Q
qijun 已提交
889 890
            config_assert(output_x <= 0)

Z
zhangjinchao01 已提交
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv3D(Cfg):
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None,
                 filter_size_z=None,
                 padding_z=None,
                 stride_z=None):
        self.add_keys(locals())
C
chengduoZH 已提交
912 913 914 915 916 917
        self.filter_size_y = filter_size_y if filter_size_y else filter_size
        self.filter_size_z = filter_size_z if filter_size_z else filter_size
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride
918 919 920 921
        if output_x is not None:
            config_assert(output_x <= 0)


L
liaogang 已提交
922 923
@config_class
class BilinearInterp(Cfg):
L
Luo Tao 已提交
924
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
L
liaogang 已提交
925 926
        self.add_keys(locals())

Q
qijun 已提交
927

Z
zhangjinchao01 已提交
928 929
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
930 931 932 933 934 935 936 937 938 939 940
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
Z
zhangjinchao01 已提交
941
        self.add_keys(locals())
Q
qijun 已提交
942 943


C
chengduoZH 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
@config_class
class Pool3d(Cfg):
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            size_z=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            stride_z=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None,
            padding_z=None):
        self.add_keys(locals())
        self.filter_size_y = size_y if size_y else size_x
        self.filter_size_z = size_z if size_z else size_x
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride


Q
qijun 已提交
969
@config_class
Q
qijun 已提交
970
class SpatialPyramidPool(Cfg):
L
Luo Tao 已提交
971
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
972
        self.add_keys(locals())
Z
zhangjinchao01 已提交
973

Q
qijun 已提交
974

D
dangqingqing 已提交
975 976 977 978 979 980
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


Z
zhangjinchao01 已提交
981 982
@config_class
class Norm(Cfg):
Q
qijun 已提交
983 984 985 986 987 988 989 990 991
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
Z
zhangjinchao01 已提交
992 993
        self.add_keys(locals())

Q
qijun 已提交
994

Z
zhangjinchao01 已提交
995 996
@config_class
class Image(Cfg):
Q
qijun 已提交
997
    def __init__(self, channels, img_size=None):
Z
zhangjinchao01 已提交
998 999
        self.add_keys(locals())

Q
qijun 已提交
1000

Z
zhangjinchao01 已提交
1001 1002
@config_class
class BlockExpand(Cfg):
Q
qijun 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
Z
zhangjinchao01 已提交
1015 1016
        self.add_keys(locals())

Q
qijun 已提交
1017

1018 1019
@config_class
class MaxOut(Cfg):
Q
qijun 已提交
1020
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
1021 1022
        self.add_keys(locals())

Q
qijun 已提交
1023

1024
def create_data_config_proto(async_load_data=False,
1025
                             constant_slots=None,
王益 已提交
1026 1027 1028
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
Z
zhangjinchao01 已提交
1029 1030 1031 1032 1033 1034 1035 1036
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
Q
qijun 已提交
1037 1038
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
Z
zhangjinchao01 已提交
1039

Q
qijun 已提交
1040
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
Z
zhangjinchao01 已提交
1041 1042 1043 1044 1045 1046
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

Q
qijun 已提交
1047

Z
zhangjinchao01 已提交
1048
@config_func
Q
qijun 已提交
1049 1050 1051 1052 1053
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
1054
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

Q
qijun 已提交
1064

Z
zhangjinchao01 已提交
1065
@config_func
Q
qijun 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1076
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1077 1078
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
Q
qijun 已提交
1079

Z
zhangjinchao01 已提交
1080 1081 1082
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
Q
qijun 已提交
1083

Z
zhangjinchao01 已提交
1084 1085 1086
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
Q
qijun 已提交
1087 1088
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
Z
zhangjinchao01 已提交
1089
        g_py_module_name_list.append(module_new_name)
Q
qijun 已提交
1090 1091 1092 1093
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
Z
zhangjinchao01 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

Q
qijun 已提交
1118

Z
zhangjinchao01 已提交
1119 1120
#real data for training is actually provided by "sub_data" data providers.
@config_func
Q
qijun 已提交
1121
def MultiData(sub_data=[]):
Z
zhangjinchao01 已提交
1122 1123 1124 1125 1126
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

Q
qijun 已提交
1127

Z
zhangjinchao01 已提交
1128
@config_func
Q
qijun 已提交
1129 1130 1131 1132 1133 1134 1135
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
Z
zhangjinchao01 已提交
1136

1137
    data_config = create_data_config_proto(**xargs)
Z
zhangjinchao01 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

Q
qijun 已提交
1171

L
Luo Tao 已提交
1172 1173
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
X
xzl 已提交
1174 1175 1176 1177 1178 1179 1180 1181
def cnn_output_size(img_size,
                    filter_size,
                    padding,
                    stride,
                    caffe_mode,
                    dilation=1):
    filter_s = (filter_size - 1) * dilation + 1
    output = (2 * padding + img_size - filter_s) / float(stride)
1182 1183 1184 1185 1186
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

Q
qijun 已提交
1187

1188
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
L
Luo Tao 已提交
1189
#It is the reverse function of cnn_output_size
X
xzl 已提交
1190 1191 1192 1193 1194 1195 1196 1197
def cnn_image_size(output_size,
                   filter_size,
                   padding,
                   stride,
                   caffe_mode,
                   dilation=1):
    filter_s = (filter_size - 1) * dilation + 1
    img_size = (output_size - 1) * stride + filter_s - 2 * padding
L
Luo Tao 已提交
1198 1199
    if not caffe_mode:
        img_size = img_size + 1
1200 1201
    return img_size

Q
qijun 已提交
1202

L
Luo Tao 已提交
1203
def get_img_size(input_layer_name, channels):
L
Luo Tao 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


C
chengduoZH 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
def get_img3d_size(input_layer_name, channels):
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width
    img_size_y = input.height
    img_size_z = input.depth

    config_assert(
        img_size * img_size_y * img_size_z == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels))
    return img_size, img_size_y, img_size_z


L
Luo Tao 已提交
1230 1231 1232 1233 1234 1235
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1236
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
Z
zhangjinchao01 已提交
1237
    pool_conf.pool_type = pool.pool_type
Q
qijun 已提交
1238
    config_assert(pool.pool_type in [
X
xzl 已提交
1239 1240 1241
        'max-projection', 'avg-projection', 'max-pool-with-mask', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in " \
              "['max-projection', 'avg-projection', 'max-pool-with-mask'," \
Q
qijun 已提交
1242
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
Z
zhangjinchao01 已提交
1243 1244 1245 1246 1247 1248

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
Q
qijun 已提交
1249
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
Z
zhangjinchao01 已提交
1250

L
Luo Tao 已提交
1251
    pool_conf.img_size, pool_conf.img_size_y = \
L
Luo Tao 已提交
1252
        get_img_size(input_layer_name, pool.channels)
Z
zhangjinchao01 已提交
1253

1254
    config_assert(not pool.start, "start is deprecated in pooling.")
Z
zhangjinchao01 已提交
1255

1256
    if pool.padding is not None:
Z
zhangjinchao01 已提交
1257
        pool_conf.padding = pool.padding
1258
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1259 1260
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1261
                                         not ceil_mode)
D
dangqingqing 已提交
1262 1263
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1264
                                         pool_conf.stride_y, not ceil_mode)
Q
qijun 已提交
1265

Z
zhangjinchao01 已提交
1266

C
chengduoZH 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode):
    pool_conf.pool_type = pool.pool_type
    config_assert(pool.pool_type in ['max-projection', 'avg-projection'],
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % pool.pool_type)

    pool_conf.channels = pool.channels

    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride
    pool_conf.padding = pool.padding

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
    pool_conf.size_z = default(pool.size_z, pool_conf.size_x)
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
    pool_conf.stride_z = default(pool.stride_z, pool_conf.stride)
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)

    pool_conf.img_size, pool_conf.img_size_y, pool_conf.img_size_z = \
        get_img3d_size(input_layer_name, pool.channels)

    config_assert(not pool.start, "start is deprecated in pooling.")

    if pool.padding is not None:
        pool_conf.padding = pool.padding
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         not ceil_mode)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, not ceil_mode)
    pool_conf.output_z = cnn_output_size(pool_conf.img_size_z, pool_conf.size_z,
                                         pool_conf.padding_z,
                                         pool_conf.stride_z, not ceil_mode)


Q
qijun 已提交
1306
def parse_spp(spp, input_layer_name, spp_conf):
L
Luo Tao 已提交
1307
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1308 1309
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
Q
qijun 已提交
1310 1311
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1312
    spp_conf.pyramid_height = spp.pyramid_height
Q
qijun 已提交
1313

Q
qijun 已提交
1314

Z
zhangjinchao01 已提交
1315 1316
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
L
Luo Tao 已提交
1317
    image_conf.img_size, image_conf.img_size_y = \
L
Luo Tao 已提交
1318
        get_img_size(input_layer_name, image_conf.channels)
Q
qijun 已提交
1319

Z
zhangjinchao01 已提交
1320

C
chengduoZH 已提交
1321 1322 1323 1324 1325 1326
def parse_image3d(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
    image_conf.img_size, image_conf.img_size_y, image_conf.img_size_z = \
        get_img3d_size(input_layer_name, image_conf.channels)


Z
zhangjinchao01 已提交
1327 1328
def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1329 1330 1331 1332 1333
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
Z
zhangjinchao01 已提交
1334 1335 1336 1337 1338 1339
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

L
Luo Tao 已提交
1340
    norm_conf.img_size, norm_conf.img_size_y = \
L
Luo Tao 已提交
1341
        get_img_size(input_layer_name, norm.channels)
Z
zhangjinchao01 已提交
1342
    norm_conf.output_x = norm_conf.img_size
L
Luo Tao 已提交
1343
    norm_conf.output_y = norm_conf.img_size_y
Z
zhangjinchao01 已提交
1344 1345 1346
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
Q
qijun 已提交
1347 1348
        norm_conf.scale /= norm.size**2

1349

L
Luo Tao 已提交
1350 1351
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1352
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
Z
zhangjinchao01 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
X
xzl 已提交
1362 1363 1364 1365 1366 1367
    if not conv.dilation:
        conv.dilation = 1
        conv.dilation_y = 1
    else:
        conv_conf.dilation = conv.dilation
        conv_conf.dilation_y = conv.dilation_y
Q
qijun 已提交
1368

1369
    if not trans:
1370
        conv_conf.filter_channels = conv.channels / conv.groups
L
Luo Tao 已提交
1371
        conv_conf.img_size, conv_conf.img_size_y = \
L
Luo Tao 已提交
1372
            get_img_size(input_layer_name, conv.channels)
1373
        conv_conf.output_x = cnn_output_size(
Q
qijun 已提交
1374
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
X
xzl 已提交
1375
            conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
L
Luo Tao 已提交
1376 1377
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
X
xzl 已提交
1378
            conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
1379
    else:
1380
        conv_conf.filter_channels = num_filters / conv.groups
L
Luo Tao 已提交
1381
        conv_conf.output_x, conv_conf.output_y = \
L
Luo Tao 已提交
1382
            get_img_size(input_layer_name, conv.channels)
1383
        conv_conf.img_size = cnn_image_size(
Q
qijun 已提交
1384
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
X
xzl 已提交
1385
            conv_conf.stride, conv_conf.caffe_mode, conv.dilation)
L
Luo Tao 已提交
1386
        conv_conf.img_size_y = cnn_image_size(
L
Luo Tao 已提交
1387
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
X
xzl 已提交
1388
            conv_conf.stride_y, conv_conf.caffe_mode, conv.dilation_y)
Q
qijun 已提交
1389

1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
def parse_conv3d(conv, input_layer_name, conv_conf, num_filters, trans=False):
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.filter_size_z = conv.filter_size_z
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.padding_z = conv.padding_z
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.stride_z = conv.stride_z
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode

    if not trans:
        conv_conf.filter_channels = conv.channels / conv.groups
        conv_conf.img_size, conv_conf.img_size_y, conv_conf.img_size_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.output_x = cnn_output_size(
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.output_z = cnn_output_size(
            conv_conf.img_size_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)
    else:
        conv_conf.filter_channels = num_filters / conv.groups
        conv_conf.output_x, conv_conf.output_y, conv_conf.output_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.img_size = cnn_image_size(
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.img_size_y = cnn_image_size(
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.img_size_z = cnn_image_size(
            conv_conf.output_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)


Z
zhangjinchao01 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1448
        block_expand_conf.output_x = cnn_output_size(
1449
            block_expand.img_size_x, block_expand.block_x,
1450
            block_expand.padding_x, block_expand.stride_x, False)
Z
zhangjinchao01 已提交
1451 1452

    if block_expand_conf.img_size_y == 0:
1453
        block_expand_conf.output_y = 0
Z
zhangjinchao01 已提交
1454
    else:
1455
        block_expand_conf.output_y = cnn_output_size(
1456
            block_expand.img_size_y, block_expand.block_y,
1457
            block_expand.padding_y, block_expand.stride_y, False)
Z
zhangjinchao01 已提交
1458

Q
qijun 已提交
1459

1460
def parse_maxout(maxout, input_layer_name, maxout_conf):
L
Luo Tao 已提交
1461
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1462
    maxout_conf.groups = maxout.groups
1463

Q
qijun 已提交
1464

Z
zhangjinchao01 已提交
1465 1466
# Define an evaluator
@config_func
Y
yangyaming 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
Z
zhangjinchao01 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
L
Liang Zhao 已提交
1509 1510
    if top_k is not None:
        evaluator.top_k = top_k
1511 1512
    if delimited is not None:
        evaluator.delimited = delimited
Z
zhangjinchao01 已提交
1513

1514 1515 1516
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

Q
qijun 已提交
1529

Z
zhangjinchao01 已提交
1530 1531 1532 1533 1534
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
Q
qijun 已提交
1535
            size,  # size can be 0. In this case, subclass should set it.
Z
zhangjinchao01 已提交
1536 1537 1538 1539
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1540 1541
            coeff=None,
            error_clipping_threshold=None):
Z
zhangjinchao01 已提交
1542
        config_assert('@' not in name,
Q
qijun 已提交
1543
                      "layer name: %s contain special character @" % name)
Z
zhangjinchao01 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1559
        assert isinstance(self.config, LayerConfig)
1560
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
T
tensor-tang 已提交
1561
        mkldnn_acts = ['relu', 'tanh', 'softmax']
1562 1563
        if use_mkldnn and active_type in mkldnn_acts:
            active_type = "mkldnn_" + active_type
Z
zhangjinchao01 已提交
1564 1565 1566
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1567 1568
        if coeff is not None:
            self.config.coeff = float(coeff)
Z
zhangjinchao01 已提交
1569 1570 1571 1572 1573 1574 1575
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1576
        elif g_default_device is not None:
Z
zhangjinchao01 已提交
1577 1578
            self.config.device = g_default_device

C
caoying03 已提交
1579 1580 1581
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

Z
zhangjinchao01 已提交
1582 1583 1584 1585 1586 1587 1588
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
Q
qijun 已提交
1589 1590
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
Z
zhangjinchao01 已提交
1591 1592 1593 1594 1595 1596 1597 1598
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
Q
qijun 已提交
1599
                self.operators.append(input)
Z
zhangjinchao01 已提交
1600 1601 1602 1603
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
Q
qijun 已提交
1604
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
Z
zhangjinchao01 已提交
1605
            config_assert(input_layer_name in g_layer_map,
Q
qijun 已提交
1606 1607
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
Z
zhangjinchao01 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
Q
qijun 已提交
1625
            bias,  # True/False or BiasCfg
Z
zhangjinchao01 已提交
1626
            size,
Q
qijun 已提交
1627 1628 1629
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
Z
zhangjinchao01 已提交
1630 1631 1632 1633 1634 1635

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

Q
qijun 已提交
1636 1637 1638
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
Z
zhangjinchao01 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1648 1649
                assert isinstance(self.config, LayerConfig)

Z
zhangjinchao01 已提交
1650 1651 1652
                Parameter(
                    bias.parameter_name,
                    size,
Q
qijun 已提交
1653 1654
                    self.config.device
                    if self.config.HasField('device') else None,
Z
zhangjinchao01 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
Q
qijun 已提交
1666 1667
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1668
                    is_static=bias.is_static,
X
xuwei06 已提交
1669 1670
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
Z
zhangjinchao01 已提交
1671 1672 1673 1674 1675
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

Q
qijun 已提交
1676 1677 1678 1679 1680 1681
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
Z
zhangjinchao01 已提交
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
Q
qijun 已提交
1696 1697
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
Z
zhangjinchao01 已提交
1698 1699
                          % (input_config.parameter_name, para.size, size))

Q
qijun 已提交
1700 1701
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
Z
zhangjinchao01 已提交
1702 1703 1704 1705 1706 1707
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1708
            self.config.device if self.config.HasField("device") else None,
Z
zhangjinchao01 已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
Q
qijun 已提交
1721 1722
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
Z
zhangjinchao01 已提交
1723 1724 1725 1726
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
X
xuwei06 已提交
1727 1728
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
Z
zhangjinchao01 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

L
Luo Tao 已提交
1738 1739 1740 1741
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

C
chengduoZH 已提交
1742 1743 1744
    def set_layer_depth(self, depth):
        self.config.depth = depth

L
Luo Tao 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

Q
qijun 已提交
1758

Z
zhangjinchao01 已提交
1759 1760
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
Q
qijun 已提交
1761 1762 1763
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
Z
zhangjinchao01 已提交
1764 1765
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

Q
qijun 已提交
1766

C
caoying03 已提交
1767 1768 1769
@config_layer('cross_entropy_over_beam')
class CrossEntropyOverBeamLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
C
caoying03 已提交
1770
        config_assert(len(inputs) % 3 == 0, "Error input number.")
C
caoying03 已提交
1771 1772 1773 1774
        super(CrossEntropyOverBeamLayer, self).__init__(
            name, 'cross_entropy_over_beam', 0, inputs, **xargs)
        input_num = len(inputs) / 3
        for i in range(input_num):
C
caoying03 已提交
1775 1776 1777 1778 1779
            input_layer = self.get_input_layer(i * 3)
            config_assert(input_layer.size == 1, (
                "Inputs for this layer are made up of "
                "several triples, in which the first one is scores over "
                "all candidate paths, whose size should be equal to 1."))
C
caoying03 已提交
1780 1781


Z
zhangjinchao01 已提交
1782 1783
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1784 1785
    layer_type = 'fc'

L
lianxiaochen 已提交
1786 1787 1788 1789 1790 1791 1792
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1793
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1794 1795
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1796 1797 1798 1799
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
T
tensor-tang 已提交
1800
                "MKLDNNFCLayer support one and only one input!")
T
tensor-tang 已提交
1801 1802
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
1803 1804 1805 1806 1807 1808
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1809 1810
            if use_mkldnn:
                config_assert(not sparse,
T
tensor-tang 已提交
1811
                              "MKLDNNFCLayer do not support sparse format yet")
T
tensor-tang 已提交
1812 1813
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
Z
zhangjinchao01 已提交
1814 1815
            if sparse:
                psize = self.inputs[input_index].nnz
1816 1817
            else:
                sparse = None
Z
zhangjinchao01 已提交
1818

Q
qijun 已提交
1819 1820
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1821
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1822 1823
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
Z
zhangjinchao01 已提交
1824

Q
qijun 已提交
1825

T
tensor-tang 已提交
1826
@config_layer('mkldnn_fc')
T
tensor-tang 已提交
1827
class MKLDNNFcLayer(FCLayer):
T
tensor-tang 已提交
1828 1829 1830
    layer_type = 'mkldnn_fc'


Z
zhangjinchao01 已提交
1831 1832
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
Q
qijun 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
Z
zhangjinchao01 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
Q
qijun 已提交
1863 1864
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
Z
zhangjinchao01 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

Q
qijun 已提交
1877 1878
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
Z
zhangjinchao01 已提交
1879 1880
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
1881

1882 1883
@config_layer('print')
class PrintLayer(LayerBase):
1884
    def __init__(self, name, inputs, format=None):
1885
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1886 1887 1888 1889 1890 1891
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1892

Q
qijun 已提交
1893

Y
yuan 已提交
1894 1895
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1896 1897
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1898
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
G
gaoyuan 已提交
1899
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1900 1901 1902 1903 1904 1905 1906
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
G
gaoyuan 已提交
1907
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1908 1909 1910 1911 1912 1913
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

Q
qijun 已提交
1914

1915 1916 1917
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1918
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1940
                 background_id, **xargs):
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


G
guosheng 已提交
1961 1962
@config_layer('roi_pool')
class ROIPoolLayer(LayerBase):
1963 1964
    def __init__(self, name, inputs, pooled_width, pooled_height, spatial_scale,
                 num_channels, **xargs):
G
guosheng 已提交
1965 1966 1967 1968 1969
        super(ROIPoolLayer, self).__init__(name, 'roi_pool', 0, inputs)
        config_assert(len(inputs) == 2, 'ROIPoolLayer must have 2 inputs')
        self.config.inputs[0].roi_pool_conf.pooled_width = pooled_width
        self.config.inputs[0].roi_pool_conf.pooled_height = pooled_height
        self.config.inputs[0].roi_pool_conf.spatial_scale = spatial_scale
1970
        self.set_cnn_layer(name, pooled_height, pooled_width, num_channels)
G
guosheng 已提交
1971 1972


Z
zhangjinchao01 已提交
1973 1974
@config_layer('data')
class DataLayer(LayerBase):
C
chengduoZH 已提交
1975 1976 1977 1978 1979 1980 1981
    def __init__(self,
                 name,
                 size,
                 depth=None,
                 height=None,
                 width=None,
                 device=None):
Q
qijun 已提交
1982 1983
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
L
Luo Tao 已提交
1984 1985
        if height and width:
            self.set_layer_height_width(height, width)
C
chengduoZH 已提交
1986 1987
        if depth:
            self.set_layer_depth(depth)
Q
qijun 已提交
1988

Z
zhangjinchao01 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
Q
qijun 已提交
2016 2017


Z
zhangjinchao01 已提交
2018 2019
@config_layer('data_norm')
class DataNormLayer(LayerBase):
Q
qijun 已提交
2020
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
Z
zhangjinchao01 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

Q
qijun 已提交
2032

Z
zhangjinchao01 已提交
2033 2034 2035
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
Q
qijun 已提交
2036 2037

    def __init__(self, name, inputs, partial_sum=1, **args):
Z
zhangjinchao01 已提交
2038 2039
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
X
xzl 已提交
2040

Z
zhangjinchao01 已提交
2041
        input_layer = self.get_input_layer(0)
2042 2043 2044
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
2045 2046

        dims = [1, input_layer.size / partial_sum]
Z
zhangjinchao01 已提交
2047
        self.set_layer_size(input_layer.size)
C
caoying03 已提交
2048
        self.config.partial_sum = partial_sum
2049 2050 2051 2052 2053
        self.create_input_parameter(0, input_layer.size / partial_sum, dims)

        self.set_layer_height_width(self.get_input_layer(0).height, \
                                        self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
Z
zhangjinchao01 已提交
2054

Q
qijun 已提交
2055

Z
zhangjinchao01 已提交
2056 2057 2058
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
Q
qijun 已提交
2059 2060 2061 2062 2063 2064 2065 2066

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
Z
zhangjinchao01 已提交
2067 2068 2069 2070 2071 2072
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

2073
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
Z
zhangjinchao01 已提交
2074 2075 2076
        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2077 2078
        # Automatically select cudnn_type for GPU, exconv for CPU
        # and mkldnn_conv for MKLDNN
Z
zhangjinchao01 已提交
2079
        # if set type=conv, but still reserve the way user specify
2080
        # exconv, mkldnn_conv or cudnn_conv manually.
Z
zhangjinchao01 已提交
2081 2082 2083
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

2084 2085 2086
        if self.layer_type == "mkldnn_conv":
            config_assert(use_mkldnn, "mkldnn_conv only support MKLDNN")

Z
zhangjinchao01 已提交
2087
        if (use_gpu == 1 and self.layer_type != "exconv" and
2088
                self.layer_type != "mkldnn_conv" and
Q
qijun 已提交
2089
            (parallel_nn == 0 or self.config.device > -1)):
Z
zhangjinchao01 已提交
2090 2091
            self.layer_type = "cudnn_conv"
        else:
2092
            self.layer_type = "mkldnn_conv" if use_mkldnn else "exconv"
Z
zhangjinchao01 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
L
Luo Tao 已提交
2102 2103
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
Z
zhangjinchao01 已提交
2104 2105
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
L
Luo Tao 已提交
2106 2107
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
Z
zhangjinchao01 已提交
2108 2109 2110 2111 2112 2113 2114 2115

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
2116
               * (conv_conf.filter_size * conv_conf.filter_size_y)
Z
zhangjinchao01 已提交
2117

Q
qijun 已提交
2118

Z
zhangjinchao01 已提交
2119 2120 2121 2122
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

Q
qijun 已提交
2123

2124 2125 2126 2127 2128
@config_layer('mkldnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'mkldnn_conv'


Z
zhangjinchao01 已提交
2129 2130 2131 2132
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

2133 2134 2135 2136

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
Q
qijun 已提交
2137 2138 2139 2140 2141 2142 2143 2144

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2145
        super(ConvTransLayerBase, self).__init__(
2146 2147 2148 2149 2150 2151 2152 2153
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
2165 2166 2167 2168 2169 2170 2171 2172
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2173
            parse_conv(
2174 2175
                self.inputs[input_index].conv,
                input_layer.name,
2176
                self.config.inputs[input_index].conv_conf,
2177
                num_filters,
2178
                trans=True)
2179 2180 2181
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2182 2183
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
2184 2185 2186 2187 2188 2189 2190

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
2191
        return conv_conf.channels * conv_conf.filter_channels \
2192 2193
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

Q
qijun 已提交
2194

2195 2196 2197 2198
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

Q
qijun 已提交
2199

2200 2201 2202 2203 2204
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


C
chengduoZH 已提交
2205 2206
@config_layer('conv_3d')
class Conv3DLayerBase(LayerBase):
2207 2208 2209 2210 2211
    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
C
chengduoZH 已提交
2212
                 shared_biases=True,
2213
                 **xargs):
C
chengduoZH 已提交
2214
        super(Conv3DLayerBase, self).__init__(
2215 2216 2217 2218 2219 2220 2221 2222
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        # need to specify layer in config
        self.config.type = self.layer_type

C
chengduoZH 已提交
2223 2224 2225 2226
        trans = False
        if self.config.type == "deconv3d":
            trans = True

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
            parse_conv3d(
                self.inputs[input_index].conv,
                input_layer.name,
                conv_conf,
                num_filters,
C
chengduoZH 已提交
2238
                trans=trans
2239 2240 2241
            )  # for z-axis pad:0, strid:1, filter_size:1, img_size:1
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
C
chengduoZH 已提交
2242 2243 2244 2245 2246 2247 2248
            if trans:
                self.set_cnn_layer(name, conv_conf.img_size_z,
                                   conv_conf.img_size_y, conv_conf.img_size,
                                   self.config.num_filters)
            else:
                self.set_cnn_layer(name, conv_conf.output_z, conv_conf.output_y,
                                   conv_conf.output_x, self.config.num_filters)
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
               * (conv_conf.filter_size * conv_conf.filter_size_y \
                  * conv_conf.filter_size_z)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
C
chengduoZH 已提交
2269 2270
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
2271 2272 2273 2274 2275
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


C
chengduoZH 已提交
2276 2277 2278
@config_layer('conv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'conv3d'
2279

Q
qijun 已提交
2280

C
chengduoZH 已提交
2281 2282 2283
@config_layer('deconv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'deconv3d'
2284 2285


Z
zhangjinchao01 已提交
2286 2287
@config_layer('norm')
class NormLayer(LayerBase):
2288 2289
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2290 2291 2292
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
L
Luo Tao 已提交
2293 2294 2295 2296
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2297 2298 2299
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
Q
qijun 已提交
2300

Z
zhangjinchao01 已提交
2301 2302 2303

@config_layer('pool')
class PoolLayer(LayerBase):
2304 2305
    layer_type = 'pool'

2306
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
2307 2308 2309 2310 2311 2312
        use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0))
        if self.layer_type == "mkldnn_pool":
            config_assert(use_mkldnn, "mkldnn_pool only support MKLDNN")
        self.layer_type = 'mkldnn_pool' if use_mkldnn else 'pool'
        super(PoolLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2313 2314 2315
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
L
Luo Tao 已提交
2316
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2317
                       pool_conf, ceil_mode)
L
Luo Tao 已提交
2318 2319
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
Q
qijun 已提交
2320

Z
zhangjinchao01 已提交
2321

2322 2323 2324 2325 2326
@config_layer('mkldnn_pool')
class MKLDNNPoolLayer(PoolLayer):
    layer_type = 'mkldnn_pool'


C
chengduoZH 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
@config_layer('pool3d')
class Pool3DLayer(LayerBase):
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(Pool3DLayer, self).__init__(
            name, 'pool3d', 0, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
            parse_pool3d(self.inputs[input_index].pool, input_layer.name,
                         pool_conf, ceil_mode)
            self.set_cnn_layer(name, pool_conf.output_z, pool_conf.output_y,
                               pool_conf.output_x, pool_conf.channels)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


Q
qijun 已提交
2356 2357
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2358
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2359
        super(SpatialPyramidPoolLayer, self).__init__(
2360
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2361 2362 2363
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
L
Luo Tao 已提交
2364 2365 2366
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2367

Q
qijun 已提交
2368

D
dangqingqing 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2388 2389
@config_layer('crop')
class CropLayer(LayerBase):
2390
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2391
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2392 2393 2394
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


Z
zhangjinchao01 已提交
2405 2406 2407
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
Q
qijun 已提交
2408 2409 2410 2411 2412

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
C
chengduoZH 已提交
2413
                 img3D=False,
Q
qijun 已提交
2414
                 use_global_stats=True,
P
peterzhang2029 已提交
2415
                 epsilon=1e-5,
Q
qijun 已提交
2416 2417
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
C
chengduoZH 已提交
2418
                 mean_var_names=None,
Q
qijun 已提交
2419
                 **xargs):
Z
zhangjinchao01 已提交
2420 2421 2422 2423
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
Q
qijun 已提交
2424 2425
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
Z
zhangjinchao01 已提交
2426 2427 2428 2429 2430 2431
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
2432
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
Z
zhangjinchao01 已提交
2433 2434
        is_shared = True if not use_gpu else False
        for i in xrange(2):
Q
qijun 已提交
2435 2436 2437 2438 2439 2440
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2441
                    is_shared=is_shared,
D
dangqingqing 已提交
2442
                    make_layer_name_in_submodel=False, ))
Z
zhangjinchao01 已提交
2443 2444 2445

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
2446 2447 2448 2449
        # Automatically select cudnn_batch_norm for GPU, batch_norm for CPU
        # and mkldnn_batch_norm for MKLDNN. Also based on cudnn version.
        if batch_norm_type == "mkldnn_batch_norm":
            config_assert(use_mkldnn, "mkldnn_batch_norm only support MKLDNN")
Z
zhangjinchao01 已提交
2450
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2451
                not use_mkldnn and batch_norm_type != "mkldnn_batch_norm" and \
2452
                ((not parallel_nn) or self.config.device > -1)
2453 2454 2455 2456
        if use_cudnn:
            self.layer_type = "cudnn_batch_norm"
        else:
            self.layer_type = "mkldnn_batch_norm" if use_mkldnn else "batch_norm"
Q
qijun 已提交
2457
        super(BatchNormLayer, self).__init__(
X
xuwei06 已提交
2458
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2459 2460 2461 2462 2463

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction
P
peterzhang2029 已提交
2464 2465 2466
        if epsilon is not None:
            assert epsilon >= 1e-5, "epsilon must be no less than 1e-5."
            self.config.epsilon = epsilon
Z
zhangjinchao01 已提交
2467

Q
qijun 已提交
2468
        input_layer = self.get_input_layer(0)
Z
zhangjinchao01 已提交
2469
        image_conf = self.config.inputs[0].image_conf
C
chengduoZH 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
        if img3D:
            parse_image3d(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    depth=image_conf.img_size_z,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
2484
        else:
C
chengduoZH 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
            parse_image(self.inputs[0].image, input_layer.name, image_conf)
            # Only pass the width and height of input to batch_norm layer
            # when either of it is non-zero.
            if input_layer.width != 0 or input_layer.height != 0:
                self.set_cnn_layer(
                    input_layer_name=name,
                    height=image_conf.img_size_y,
                    width=image_conf.img_size,
                    channels=image_conf.channels,
                    is_print=True)
            else:
                self.set_layer_size(input_layer.size)
Z
zhangjinchao01 已提交
2497 2498 2499

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
C
chengduoZH 已提交
2500 2501 2502 2503
        if mean_var_names is not None:
            assert len(mean_var_names) == 2
            self.inputs[1].parameter_name = mean_var_names[0]
            self.inputs[2].parameter_name = mean_var_names[1]
C
chengduoZH 已提交
2504

Z
zhangjinchao01 已提交
2505 2506 2507 2508 2509 2510
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

C
chengduoZH 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
    def set_cnn_layer(self,
                      input_layer_name,
                      depth=None,
                      height=None,
                      width=None,
                      channels=None,
                      is_print=True):
        depthIsNone = False
        if depth is None:
            depth = 1
            depthIsNone = True
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print and depthIsNone:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))
        elif is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))

Z
zhangjinchao01 已提交
2533 2534 2535
    def calc_parameter_size(self, image_conf):
        return image_conf.channels

Q
qijun 已提交
2536

Z
zhangjinchao01 已提交
2537 2538
@config_layer('trans')
class TransLayer(LayerBase):
2539
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2540
        super(TransLayer, self).__init__(
2541
            name, 'trans', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2542 2543 2544
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
Z
zhangjinchao01 已提交
2545 2546
        self.set_layer_size(self.get_input_layer(0).size)

Q
qijun 已提交
2547

Z
zhangjinchao01 已提交
2548 2549
@config_layer('resize')
class ResizeLayer(LayerBase):
2550
    def __init__(self, name, size, inputs, **xargs):
Q
qijun 已提交
2551
        super(ResizeLayer, self).__init__(
2552
            name, 'resize', size=size, inputs=inputs, **xargs)
Q
qijun 已提交
2553 2554 2555 2556
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

Z
zhangjinchao01 已提交
2557

2558 2559
@config_layer('rotate')
class RotateLayer(LayerBase):
H
Haonan 已提交
2560
    def __init__(self, name, inputs, height, width, device=None):
2561 2562 2563 2564 2565
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
H
Haonan 已提交
2566
        self.set_layer_height_width(height, width)
2567 2568 2569
        self.set_layer_size(self.get_input_layer(0).size)


Z
zhangjinchao01 已提交
2570 2571
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2572
    def __init__(self, name, inputs, **xargs):
Q
qijun 已提交
2573
        super(BlockExpandLayer, self).__init__(
2574
            name, 'blockexpand', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
2575 2576
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
Q
qijun 已提交
2577 2578
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
Z
zhangjinchao01 已提交
2579
                self.config.inputs[input_index].block_expand_conf)
Q
qijun 已提交
2580 2581 2582 2583 2584 2585
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

Z
zhangjinchao01 已提交
2586

2587 2588
@config_layer('maxout')
class MaxOutLayer(LayerBase):
Q
qijun 已提交
2589 2590 2591
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2592 2593
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
L
Luo Tao 已提交
2594
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
L
Luo Tao 已提交
2595
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
2596 2597
        self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
                           maxout_conf.image_conf.img_size, out_channels)
Q
qijun 已提交
2598

2599

D
dangqingqing 已提交
2600 2601 2602 2603
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2604
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2605 2606
        config_assert(
            len(self.inputs) == 1,
2607
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2617 2618
@config_layer('clip')
class ClipLayer(LayerBase):
2619 2620
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2621 2622
        config_assert(
            len(self.inputs) == 1,
2623 2624
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2625 2626
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2627 2628
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2629 2630


G
guosheng 已提交
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
    def __init__(self, name, inputs, bias=True, **xargs):
        super(ScaleShiftLayer, self).__init__(
            name, 'scale_shift', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'ScaleShiftLayer must have one and only one input.')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, 1, [1, 1])
        self.create_bias_parameter(bias, 1)


Z
zhangjinchao01 已提交
2645 2646 2647 2648
# key: cost type
# value: cost class
g_cost_map = {}

Q
qijun 已提交
2649

Z
zhangjinchao01 已提交
2650 2651 2652
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
Q
qijun 已提交
2653 2654
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
Z
zhangjinchao01 已提交
2655

Q
qijun 已提交
2656
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
Z
zhangjinchao01 已提交
2657 2658 2659
    global g_cost_map
    g_cost_map[cost_type] = cls

Q
qijun 已提交
2660

Z
zhangjinchao01 已提交
2661
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
C
caoying03 已提交
2662
define_cost('CrossEntropyOverBeamCostLayer', 'cross_entropy_over_beam')
Z
zhangjinchao01 已提交
2663 2664 2665 2666 2667 2668
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
2669
define_cost('HuberTwoClassification', 'huber_classification')
X
xuwei06 已提交
2670
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2671
define_cost('SmoothL1Cost', 'smooth_l1')
Z
zhangjinchao01 已提交
2672

Q
qijun 已提交
2673

Z
zhangjinchao01 已提交
2674 2675
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
Q
qijun 已提交
2676
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
Z
zhangjinchao01 已提交
2677 2678
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
Q
qijun 已提交
2679 2680 2681
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2682 2683 2684 2685 2686 2687 2688 2689
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

Q
qijun 已提交
2690

Z
zhangjinchao01 已提交
2691 2692 2693 2694 2695 2696 2697 2698
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
L
Luo Tao 已提交
2699
          by PyDataProvider etc.. User should provide
Z
zhangjinchao01 已提交
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
Q
qijun 已提交
2715 2716


Z
zhangjinchao01 已提交
2717 2718
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
Q
qijun 已提交
2719
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
Z
zhangjinchao01 已提交
2720 2721
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
Q
qijun 已提交
2722
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
Z
zhangjinchao01 已提交
2723 2724
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
Q
qijun 已提交
2725 2726 2727
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
Z
zhangjinchao01 已提交
2728 2729
        self.config.max_sort_size = max_sort_size

Q
qijun 已提交
2730

L
Luo Tao 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
@config_layer('huber_regression')
class HuberRegressionLoss(LayerBase):
    def __init__(self, name, inputs, delta=1., coeff=1., device=None):
        super(HuberRegressionLoss, self).__init__(
            name, 'huber_regression', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'HuberRegression must have 2 inputs')
        self.config.delta = delta
        self.config.coeff = coeff


Z
zhangjinchao01 已提交
2742 2743
@config_layer('nce')
class NCELayer(LayerBase):
Q
qijun 已提交
2744 2745 2746 2747 2748 2749 2750 2751
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
2752
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
Q
qijun 已提交
2753 2754
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
Z
zhangjinchao01 已提交
2755 2756
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
Q
qijun 已提交
2757 2758 2759 2760
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
Z
zhangjinchao01 已提交
2761
            s = sum(neg_sampling_dist)
Q
qijun 已提交
2762 2763 2764
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
Z
zhangjinchao01 已提交
2765 2766 2767 2768 2769

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
Q
qijun 已提交
2770
        input_layer = self.get_input_layer(num_real_inputs)
Z
zhangjinchao01 已提交
2771 2772 2773 2774
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

Q
qijun 已提交
2775 2776
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
Z
zhangjinchao01 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
T
tensor-tang 已提交
2790 2791
    layer_type = 'addto'

Q
qijun 已提交
2792
    def __init__(self, name, inputs, bias=True, **xargs):
T
tensor-tang 已提交
2793 2794 2795 2796
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
        if self.layer_type == "mkldnn_addto":
            config_assert(use_mkldnn, "mkldnn_addto only support MKLDNN")
        self.layer_type = 'mkldnn_addto' if use_mkldnn else 'addto'
Z
zhangjinchao01 已提交
2797
        super(AddToLayer, self).__init__(
T
tensor-tang 已提交
2798
            name, self.layer_type, 0, inputs=inputs, **xargs)
Q
qijun 已提交
2799
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
2800

G
guosheng 已提交
2801 2802 2803 2804 2805 2806 2807 2808
        layer_size = self.get_input_layer(0).size
        # To reserve heght, width, depth.
        layer_with_hwc = self.get_input_layer(0)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            assert layer_size == input_layer.size
            if input_layer.height and input_layer.height and input_layer.height:
                layer_with_hwc = input_layer
2809

G
guosheng 已提交
2810 2811 2812
        self.set_layer_size(layer_with_hwc.size)
        self.set_layer_height_width(layer_with_hwc.height, layer_with_hwc.width)
        self.set_layer_depth(layer_with_hwc.depth)
Z
zhangjinchao01 已提交
2813 2814
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
2815

T
tensor-tang 已提交
2816 2817 2818 2819 2820
@config_layer('mkldnn_addto')
class MKLDNNAddtoLayer(AddToLayer):
    layer_type = 'mkldnn_addto'


Z
zhangjinchao01 已提交
2821 2822
@config_layer('agent')
class AgentLayer(LayerBase):
Q
qijun 已提交
2823 2824 2825 2826
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

Z
zhangjinchao01 已提交
2827 2828 2829

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
Q
qijun 已提交
2830
    def __init__(self, name, size, device=None):
Z
zhangjinchao01 已提交
2831 2832 2833
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

Q
qijun 已提交
2834

Z
zhangjinchao01 已提交
2835 2836
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2837
    def __init__(self, name, size, width=None, height=None, device=None):
Z
zhangjinchao01 已提交
2838 2839
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)
2840 2841
        if height and width:
            self.set_layer_height_width(height, width)
Z
zhangjinchao01 已提交
2842

Q
qijun 已提交
2843

Z
zhangjinchao01 已提交
2844 2845
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
Q
qijun 已提交
2846 2847 2848 2849 2850
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
Z
zhangjinchao01 已提交
2851
        for i in range(1, len(inputs)):
Q
qijun 已提交
2852 2853 2854 2855 2856
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

Z
zhangjinchao01 已提交
2857 2858

@config_func
2859 2860 2861 2862
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
Z
zhangjinchao01 已提交
2863 2864 2865 2866
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

Q
qijun 已提交
2867

Z
zhangjinchao01 已提交
2868 2869
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2870 2871 2872 2873
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
Z
zhangjinchao01 已提交
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2897
    agent_layer = AgentLayer(agent_name, size)
Z
zhangjinchao01 已提交
2898
    config_assert(g_current_submodel.is_recurrent_layer_group,
Q
qijun 已提交
2899
                  'Memory should be used in recurrent layer group only')
Z
zhangjinchao01 已提交
2900
    memory = g_current_submodel.memories.add()
2901 2902
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
2903
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
Q
qijun 已提交
2904
    options = sum((boot_layer is not None, bool(boot_bias),
Z
zhangjinchao01 已提交
2905
                   boot_with_const_id is not None))
Q
qijun 已提交
2906 2907 2908 2909
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
Z
zhangjinchao01 已提交
2910 2911 2912
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
Q
qijun 已提交
2913 2914
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
Z
zhangjinchao01 已提交
2915 2916 2917
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
Q
qijun 已提交
2918
            boot_bias, size, for_self=False)
Z
zhangjinchao01 已提交
2919 2920 2921 2922 2923
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

Q
qijun 已提交
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


Z
zhangjinchao01 已提交
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
Q
qijun 已提交
2947 2948 2949 2950
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
Z
zhangjinchao01 已提交
2951 2952 2953 2954 2955 2956 2957 2958 2959
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

Q
qijun 已提交
2960

Z
zhangjinchao01 已提交
2961 2962
@config_layer('expand')
class ExpandLayer(LayerBase):
2963
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
Q
qijun 已提交
2964
        super(ExpandLayer, self).__init__(
2965
            name, 'expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2966 2967 2968 2969 2970 2971 2972 2973
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

Z
zhangjinchao01 已提交
2974 2975 2976

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
X
xuwei06 已提交
2977 2978 2979 2980 2981
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
X
xuwei06 已提交
2982 2983
                 bias=False,
                 **xargs):
Q
qijun 已提交
2984
        super(FeatMapExpandLayer, self).__init__(
X
xuwei06 已提交
2985
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2986 2987 2988
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
Z
zhangjinchao01 已提交
2989
            self.config.num_filters = num_filters
Q
qijun 已提交
2990
        else:
Z
zhangjinchao01 已提交
2991
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
X
xuwei06 已提交
2992 2993
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
Q
qijun 已提交
2994
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
Z
zhangjinchao01 已提交
2995 2996 2997 2998


@config_layer('max')
class MaxLayer(LayerBase):
Q
qijun 已提交
2999 3000 3001 3002 3003
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
3004
                 output_max_index=None,
3005
                 stride=-1,
3006
                 **xargs):
3007
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3008
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
3009 3010
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3011
        self.config.trans_type = trans_type
3012
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3013 3014 3015 3016
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
3017 3018
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
Z
zhangjinchao01 已提交
3019 3020 3021 3022


@config_layer('maxid')
class MaxIdLayer(LayerBase):
Q
qijun 已提交
3023
    def __init__(self, name, inputs, beam_size=None, device=None):
Z
zhangjinchao01 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
Q
qijun 已提交
3041
    def __init__(self, name, inputs, eos_id, device=None):
Z
zhangjinchao01 已提交
3042 3043 3044
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
Q
qijun 已提交
3045
        self.set_layer_size(2)  # boolean output
Z
zhangjinchao01 已提交
3046 3047
        self.config.eos_id = eos_id

Q
qijun 已提交
3048

Z
zhangjinchao01 已提交
3049 3050
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
Q
qijun 已提交
3051 3052 3053 3054
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
3055
                 bias=False,
3056
                 stride=-1,
3057
                 **xargs):
Q
qijun 已提交
3058
        super(SequenceLastInstanceLayer, self).__init__(
X
xuwei06 已提交
3059
            name, 'seqlastins', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3060 3061
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
3062
        if trans_type == 'seq':
L
Luo Tao 已提交
3063
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3064
        self.config.trans_type = trans_type
3065 3066
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
Z
zhangjinchao01 已提交
3067 3068
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3069

Z
zhangjinchao01 已提交
3070 3071
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
3072 3073 3074 3075 3076
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
3077
                 stride=-1,
3078
                 **xargs):
Q
qijun 已提交
3079
        super(SequenceFirstInstanceLayer, self).__init__(
3080 3081 3082 3083 3084 3085
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
Z
zhangjinchao01 已提交
3086 3087
        self.config.select_first = True

Q
qijun 已提交
3088

Z
zhangjinchao01 已提交
3089 3090
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
X
xuwei06 已提交
3091
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
3092
        super(SequenceConcatLayer, self).__init__(
X
xuwei06 已提交
3093
            name, 'seqconcat', 0, inputs=inputs, **xargs)
Q
qijun 已提交
3094 3095
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
Z
zhangjinchao01 已提交
3096 3097 3098 3099 3100
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3101

Z
zhangjinchao01 已提交
3102 3103
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
X
xuwei06 已提交
3104
    def __init__(self, name, size, inputs, bias=False, **xargs):
Q
qijun 已提交
3105
        super(SequenceReshapeLayer, self).__init__(
X
xuwei06 已提交
3106
            name, 'seqreshape', size, inputs=inputs, **xargs)
Q
qijun 已提交
3107 3108
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3109 3110 3111
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
3112

Z
zhangjinchao01 已提交
3113 3114
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
X
xuwei06 已提交
3115
    def __init__(self, name, inputs, bias=False, **xargs):
Q
qijun 已提交
3116
        super(SubSequenceLayer, self).__init__(
X
xuwei06 已提交
3117
            name, 'subseq', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3118 3119 3120 3121 3122 3123
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

Q
qijun 已提交
3124

3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
@config_layer('seq_slice')
class SeqSliceLayer(LayerBase):
    def __init__(self, name, inputs, starts, ends, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sequence slice layer '
                                      'is a single sequence input.')
        else:
            inputs = [inputs]

        if starts is not None:
            if isinstance(starts, list):
                assert len(starts) == 1, (
                    'the start indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                starts = starts[0]
            inputs.append(starts)

        if ends is not None:
            if isinstance(ends, list):
                assert len(ends) == 1, (
                    'the end indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                ends = ends[0]
            inputs.append(ends)
        assert len(inputs) >= 2, (
            'the sequence slice layer has at least two inputs.')

        super(SeqSliceLayer, self).__init__(
            name, 'seq_slice', 0, inputs=inputs, **xargs)
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)

        if len(inputs) == 3:
            assert (
                self.get_input_layer(1).size == self.get_input_layer(2).size), (
                    'If start and end indices are both given to'
                    'sequence slice layer, they should have the same width.')
        elif len(inputs) == 2:
C
caoying03 已提交
3165
            self.config.select_first = (starts is not None)
3166 3167


C
caoying03 已提交
3168 3169
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
3182
        super(SubNestedSequenceLayer, self).__init__(
3183 3184 3185 3186 3187
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
3188 3189 3190 3191 3192
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


R
ranqiu 已提交
3193 3194 3195 3196 3197
@config_layer('dot_prod')
class DotProdLayer(LayerBase):
    def __init__(self, name, inputs, device=None):
        super(DotProdLayer, self).__init__(
            name, 'dot_prod', 0, inputs, device=device)
R
ranqiu 已提交
3198 3199 3200 3201
        config_assert(len(inputs) == 2, 'DotProdLayer must have 2 inputs.')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            "Two inputs should have the same size.")
R
ranqiu 已提交
3202 3203 3204
        self.set_layer_size(1)


Z
zhangjinchao01 已提交
3205 3206
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
Q
qijun 已提交
3207 3208 3209
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3210 3211 3212 3213 3214
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

Q
qijun 已提交
3215

Z
zhangjinchao01 已提交
3216 3217
@config_layer('power')
class PowerLayer(LayerBase):
Q
qijun 已提交
3218 3219 3220
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3221 3222 3223 3224
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
3225 3226 3227
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

Z
zhangjinchao01 已提交
3228 3229 3230

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
Q
qijun 已提交
3231 3232 3233
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3234 3235 3236 3237 3238 3239
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3240

Z
zhangjinchao01 已提交
3241 3242
@config_layer('scaling')
class ScalingLayer(LayerBase):
Q
qijun 已提交
3243 3244 3245
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3246 3247 3248 3249
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
Q
qijun 已提交
3250 3251 3252
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

Z
zhangjinchao01 已提交
3253 3254 3255

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
Q
qijun 已提交
3256 3257 3258
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3259 3260 3261 3262
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3263

Z
zhangjinchao01 已提交
3264 3265
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
Q
qijun 已提交
3266
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3267
        super(ConvexCombinationLayer, self).__init__(
Q
qijun 已提交
3268 3269 3270
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
3271 3272 3273
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
Z
zhangjinchao01 已提交
3274 3275
        self.set_layer_size(size)

Q
qijun 已提交
3276

Z
zhangjinchao01 已提交
3277 3278
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
Q
qijun 已提交
3279
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3280 3281
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
Q
qijun 已提交
3282 3283
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
Z
zhangjinchao01 已提交
3284 3285 3286 3287 3288 3289 3290 3291
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

Q
qijun 已提交
3292

L
liaogang 已提交
3293 3294
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
Q
qijun 已提交
3295
    def __init__(self, name, inputs, **xargs):
L
liaogang 已提交
3296
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
3297
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
L
liaogang 已提交
3298
        input_layer = self.get_input_layer(0)
L
Luo Tao 已提交
3299 3300 3301 3302
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
Q
qijun 已提交
3303

L
liaogang 已提交
3304

Z
zhangjinchao01 已提交
3305 3306
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
Q
qijun 已提交
3307
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3308
        super(SumToOneNormLayer, self).__init__(
Q
qijun 已提交
3309 3310 3311
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
Z
zhangjinchao01 已提交
3312 3313 3314
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

Q
qijun 已提交
3315

G
guosheng 已提交
3316 3317
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
3318
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
3319
        super(RowL2NormLayer, self).__init__(
3320
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
3321
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
3322 3323
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
3324 3325


C
caoying03 已提交
3326 3327 3328 3329 3330
@config_layer('cos')
class CosSimLayer(LayerBase):
    def __init__(self, name, inputs, cos_scale=1, device=None):
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
3331 3332 3333
        config_assert(
            len(self.inputs) == 2,
            'The CosSimLayer expects two and only two inputs.')
C
caoying03 已提交
3334 3335
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
C
caoying03 已提交
3336
            'The two inputs of CosSimLayer must have the same dimensionality.')
C
caoying03 已提交
3337 3338 3339
        self.config.cos_scale = cos_scale


Z
zhangjinchao01 已提交
3340 3341
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
Q
qijun 已提交
3342
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
Z
zhangjinchao01 已提交
3343
        super(CosSimVecMatLayer, self).__init__(
Q
qijun 已提交
3344
            name, 'cos_vm', size, inputs=inputs, device=device)
Z
zhangjinchao01 已提交
3345
        self.config.cos_scale = cos_scale
Q
qijun 已提交
3346
        config_assert(
3347
            len(self.inputs) == 2, 'The CosSimVecMatLayer must have 2 inputs.')
3348 3349
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
3350
            'Wrong input size for CosSimVecMatLayer.')
Z
zhangjinchao01 已提交
3351

Q
qijun 已提交
3352

C
caoying03 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
@config_layer('l2_distance')
class L2DistanceLayer(LayerBase):
    def __init__(self, name, inputs, device=None):
        super(L2DistanceLayer, self).__init__(
            name, 'l2_distance', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, ('The L2DistanceLayer must have '
                                    'and only have 2 inputs.'))
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            ('Two inputs of the L2DistanceLayer must have '
             'the same dimensionality.'))
Z
zhangjinchao01 已提交
3365

Q
qijun 已提交
3366

Z
zhangjinchao01 已提交
3367 3368
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
Q
qijun 已提交
3369
    def __init__(self, name, inputs, device=None):
Z
zhangjinchao01 已提交
3370 3371
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
Q
qijun 已提交
3372 3373
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
Z
zhangjinchao01 已提交
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
Q
qijun 已提交
3386 3387 3388 3389 3390
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
3391
                 bias=False,
3392
                 stride=-1,
3393
                 **xargs):
Q
qijun 已提交
3394
        super(AverageLayer, self).__init__(
X
xuwei06 已提交
3395
            name, 'average', 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3396
        self.config.average_strategy = average_strategy
3397 3398
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
Q
qijun 已提交
3399
        self.config.trans_type = trans_type
3400
        self.config.seq_pool_stride = stride
Z
zhangjinchao01 已提交
3401 3402 3403 3404 3405 3406
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3407

Z
zhangjinchao01 已提交
3408 3409
@config_layer('tensor')
class TensorLayer(LayerBase):
3410
    def __init__(self, name, size, inputs, bias=True, **xargs):
Q
qijun 已提交
3411
        super(TensorLayer, self).__init__(
3412
            name, 'tensor', size, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3413 3414
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
Q
qijun 已提交
3415 3416
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
Z
zhangjinchao01 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
3427
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
Z
zhangjinchao01 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
3445
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3446 3447 3448
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
3449
            else:
3450 3451
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
Q
qijun 已提交
3452 3453 3454 3455
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3456 3457 3458 3459
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
Q
qijun 已提交
3460 3461 3462
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
3463
            if self.config.size == 0 and isinstance(input, Projection):
Z
zhangjinchao01 已提交
3464 3465 3466
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
3467
            elif isinstance(input, Projection):
Q
qijun 已提交
3468 3469 3470 3471 3472 3473
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
Z
zhangjinchao01 已提交
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
Q
qijun 已提交
3485 3486
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
Z
zhangjinchao01 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3498 3499 3500 3501 3502 3503
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
Z
zhangjinchao01 已提交
3504

3505 3506 3507
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
Z
zhangjinchao01 已提交
3508

Q
qijun 已提交
3509

Z
zhangjinchao01 已提交
3510 3511
# like MixedLayer, but no bias parameter
@config_func
Q
qijun 已提交
3512
def ExpressionLayer(name, inputs, **xargs):
Z
zhangjinchao01 已提交
3513 3514
    MixedLayer(name, inputs, bias=False, **xargs)

Q
qijun 已提交
3515

Z
zhangjinchao01 已提交
3516 3517
@config_layer('concat')
class ConcatenateLayer(LayerBase):
3518 3519
    layer_type = 'concat'

Q
qijun 已提交
3520
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3521
        config_assert(inputs, 'inputs cannot be empty')
3522
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
3523 3524 3525 3526
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
        if self.layer_type == "mkldnn_concat":
            config_assert(use_mkldnn, "mkldnn_concat only support MKLDNN")
        self.layer_type = 'mkldnn_concat' if use_mkldnn else 'concat'
Z
zhangjinchao01 已提交
3527
        super(ConcatenateLayer, self).__init__(
3528
            name, self.layer_type, 0, inputs=inputs, **xargs)
Z
zhangjinchao01 已提交
3529 3530
        size = 0
        for input_index in xrange(len(self.inputs)):
3531 3532 3533 3534 3535 3536
            assert self.get_input_layer(0).height == self.get_input_layer(
                input_index).height
            assert self.get_input_layer(0).width == self.get_input_layer(
                input_index).width
            assert self.get_input_layer(0).depth == self.get_input_layer(
                input_index).depth
Z
zhangjinchao01 已提交
3537 3538
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
Q
qijun 已提交
3539
            if self.config.size == 0:
Z
zhangjinchao01 已提交
3540 3541
                size += input_layer.size

3542 3543 3544
        self.set_layer_height_width(self.get_input_layer(0).height, \
                                    self.get_input_layer(0).width)
        self.set_layer_depth(self.get_input_layer(0).depth)
Z
zhangjinchao01 已提交
3545 3546
        self.set_layer_size(size)

Q
qijun 已提交
3547

3548 3549 3550 3551 3552
@config_layer('mkldnn_concat')
class MKLDNNConcatLayer(ConcatenateLayer):
    layer_type = 'mkldnn_concat'


Z
zhangjinchao01 已提交
3553 3554 3555
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
Q
qijun 已提交
3556
    def __init__(self, name, inputs, bias=False, **xargs):
Z
zhangjinchao01 已提交
3557 3558 3559
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3560 3561

        if isinstance(self.inputs[0], ConvProjection):
Q
qijun 已提交
3562 3563 3564 3565 3566 3567
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3568

Z
zhangjinchao01 已提交
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
Q
qijun 已提交
3589
                                              input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3590
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
Q
qijun 已提交
3591
                                             input.proj_conf.output_size)
Z
zhangjinchao01 已提交
3592 3593
            self.create_input_parameter(input_index, psize, dims)

3594 3595 3596 3597 3598 3599 3600
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3601 3602 3603
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3604

Q
qijun 已提交
3605

Z
zhangjinchao01 已提交
3606 3607
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
Q
qijun 已提交
3608
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3609 3610
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
Z
zhangjinchao01 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

Q
qijun 已提交
3620

Z
zhangjinchao01 已提交
3621 3622
@config_layer('lstmemory')
class LstmLayer(LayerBase):
Q
qijun 已提交
3623 3624 3625 3626 3627 3628 3629 3630
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Z
zhangjinchao01 已提交
3631 3632 3633 3634 3635 3636 3637 3638
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3639
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3640 3641 3642 3643 3644
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

Q
qijun 已提交
3645

Z
zhangjinchao01 已提交
3646 3647
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
Q
qijun 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
Z
zhangjinchao01 已提交
3658 3659 3660
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3661 3662 3663 3664 3665
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3666 3667 3668
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3669

Z
zhangjinchao01 已提交
3670 3671 3672
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
Q
qijun 已提交
3673 3674 3675 3676
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
Z
zhangjinchao01 已提交
3677 3678 3679 3680
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

Q
qijun 已提交
3681

Z
zhangjinchao01 已提交
3682 3683
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
Q
qijun 已提交
3684 3685 3686 3687 3688 3689 3690 3691
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3692 3693
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
Z
zhangjinchao01 已提交
3694 3695 3696 3697
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3698 3699
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
Q
qijun 已提交
3700
        size = input_layer.size / (3 + dim_num)
Z
zhangjinchao01 已提交
3701
        self.set_layer_size(size)
Q
qijun 已提交
3702
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3703 3704 3705
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3706 3707
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
Z
zhangjinchao01 已提交
3708
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
Q
qijun 已提交
3709 3710
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

Z
zhangjinchao01 已提交
3711 3712 3713

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
Q
qijun 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
Z
zhangjinchao01 已提交
3725 3726 3727 3728 3729 3730
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
Q
qijun 已提交
3731
        self.config.active_gate_type = active_gate_type
Z
zhangjinchao01 已提交
3732 3733 3734
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3735

Z
zhangjinchao01 已提交
3736 3737
@config_layer('gru_step')
class GruStepLayer(LayerBase):
Q
qijun 已提交
3738 3739 3740 3741 3742 3743 3744
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3745 3746
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
Z
zhangjinchao01 已提交
3747 3748 3749
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
Q
qijun 已提交
3750 3751 3752 3753 3754
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
H
Haonan 已提交
3755
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
Z
zhangjinchao01 已提交
3756 3757
        self.create_bias_parameter(bias, size * 3)

Q
qijun 已提交
3758

Z
zhangjinchao01 已提交
3759 3760 3761 3762 3763 3764 3765
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
Q
qijun 已提交
3766 3767


Z
zhangjinchao01 已提交
3768 3769
@config_layer('crf')
class CRFLayer(LayerBase):
Q
qijun 已提交
3770
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
Z
zhangjinchao01 已提交
3771
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
Q
qijun 已提交
3772 3773
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3774
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3775 3776
        self.config.coeff = coeff

Q
qijun 已提交
3777

Z
zhangjinchao01 已提交
3778 3779 3780 3781 3782 3783 3784 3785
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
Q
qijun 已提交
3786 3787


Z
zhangjinchao01 已提交
3788 3789
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
Q
qijun 已提交
3790
    def __init__(self, name, size, inputs, device=None):
Z
zhangjinchao01 已提交
3791 3792 3793 3794 3795
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3796
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
Z
zhangjinchao01 已提交
3797

Q
qijun 已提交
3798

Z
zhangjinchao01 已提交
3799 3800
@config_layer('ctc')
class CTCLayer(LayerBase):
Q
qijun 已提交
3801
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
Z
zhangjinchao01 已提交
3802 3803 3804 3805
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

Q
qijun 已提交
3806

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


Z
zhangjinchao01 已提交
3838 3839
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
Q
qijun 已提交
3840
    def __init__(self, name, device=None):
Z
zhangjinchao01 已提交
3841 3842 3843 3844
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


3845 3846 3847 3848 3849
@config_layer('switch_order')
class SwitchOrderLayer(LayerBase):
    def __init__(self, name, inputs, reshape, **xargs):
        super(SwitchOrderLayer, self).__init__(
            name, 'switch_order', 0, inputs=inputs, **xargs)
W
wanghaoshuang 已提交
3850 3851
        self.config.reshape_conf.height_axis.extend(reshape['height'])
        self.config.reshape_conf.width_axis.extend(reshape['width'])
3852 3853


Y
yangyaming 已提交
3854 3855
@config_layer('scale_sub_region')
class ScaleSubRegionLayer(LayerBase):
Y
yangyaming 已提交
3856
    def __init__(self, name, inputs, value, **xargs):
Y
yangyaming 已提交
3857 3858 3859 3860
        super(ScaleSubRegionLayer, self).__init__(
            name, 'scale_sub_region', 0, inputs=inputs, **xargs)
        scale_sub_region_conf = self.config.inputs[0].scale_sub_region_conf
        scale_sub_region_conf.value = value
Y
yangyaming 已提交
3861 3862 3863

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
Y
yangyaming 已提交
3864
        image_conf = scale_sub_region_conf.image_conf
Y
yangyaming 已提交
3865 3866 3867 3868
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)
Y
yangyaming 已提交
3869 3870
        self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
                           image_conf.channels)
Y
yangyaming 已提交
3871 3872


Z
zhangjinchao01 已提交
3873 3874
# Deprecated, use a new layer specific class instead
@config_func
Q
qijun 已提交
3875
def Layer(name, type, **xargs):
Z
zhangjinchao01 已提交
3876 3877 3878 3879
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
Q
qijun 已提交
3880
    config_assert(layer_func, "layer type '%s' not supported." % type)
X
xuwei06 已提交
3881
    return layer_func(name, **xargs)
Z
zhangjinchao01 已提交
3882

Q
qijun 已提交
3883

Z
zhangjinchao01 已提交
3884
@config_func
Q
qijun 已提交
3885
def ParameterHook(type, **kwargs):
3886
    if type == 'pruning':
Z
zhangjinchao01 已提交
3887 3888
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3889
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3890 3891
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
Z
zhangjinchao01 已提交
3892
        return hook
3893 3894 3895 3896
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
Z
zhangjinchao01 已提交
3897 3898 3899 3900 3901
    else:
        return None


@config_func
Q
qijun 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
X
xuwei06 已提交
3923 3924
              update_hooks=None,
              initializer=None):
Z
zhangjinchao01 已提交
3925 3926 3927 3928 3929 3930 3931

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

Z
zhangjinchao01 已提交
3943 3944
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3945 3946 3947 3948 3949

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

Z
zhangjinchao01 已提交
3950 3951 3952 3953
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3954

Q
qijun 已提交
3955 3956
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3957 3958 3959
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

Z
zhangjinchao01 已提交
3960 3961 3962 3963 3964 3965
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
Q
qijun 已提交
3966 3967
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3968 3969
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
Q
qijun 已提交
3970 3971
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
Z
zhangjinchao01 已提交
3972 3973 3974 3975 3976 3977
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
Q
qijun 已提交
3978 3979 3980
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
Z
zhangjinchao01 已提交
3981 3982 3983 3984
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3985 3986 3987 3988 3989 3990 3991

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
Z
zhangjinchao01 已提交
3992 3993 3994 3995
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3996 3997
    if is_shared is not None:
        para.is_shared = is_shared
Z
zhangjinchao01 已提交
3998 3999 4000 4001 4002

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
4003
            update_hooks = update_hooks()
Z
zhangjinchao01 已提交
4004 4005 4006 4007 4008

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
4009
            para.update_hooks.extend([update_hooks])
Z
zhangjinchao01 已提交
4010 4011

    g_parameter_map[name] = para
X
xuwei06 已提交
4012 4013 4014 4015 4016
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
Z
zhangjinchao01 已提交
4017 4018 4019 4020 4021 4022 4023


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

Q
qijun 已提交
4024

Z
zhangjinchao01 已提交
4025 4026 4027 4028 4029
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

Q
qijun 已提交
4030

Z
zhangjinchao01 已提交
4031 4032 4033 4034 4035
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

Q
qijun 已提交
4036

Z
zhangjinchao01 已提交
4037 4038 4039 4040 4041
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

Q
qijun 已提交
4042

Z
zhangjinchao01 已提交
4043 4044 4045 4046 4047
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

Q
qijun 已提交
4048

Z
zhangjinchao01 已提交
4049 4050 4051 4052 4053
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

Q
qijun 已提交
4054

Z
zhangjinchao01 已提交
4055 4056 4057 4058 4059
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

Q
qijun 已提交
4060

Z
zhangjinchao01 已提交
4061 4062 4063 4064 4065
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

Q
qijun 已提交
4066

Z
zhangjinchao01 已提交
4067 4068 4069 4070 4071
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

Q
qijun 已提交
4072

Z
zhangjinchao01 已提交
4073 4074 4075 4076 4077
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

Q
qijun 已提交
4078

Z
zhangjinchao01 已提交
4079 4080 4081 4082 4083
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

Q
qijun 已提交
4084

Z
zhangjinchao01 已提交
4085 4086 4087 4088 4089
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
Q
qijun 已提交
4090 4091 4092
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

Z
zhangjinchao01 已提交
4093 4094
    return Import

Q
qijun 已提交
4095

X
xuwei06 已提交
4096
DEFAULT_SETTING = dict(
Z
zhangjinchao01 已提交
4097 4098 4099 4100 4101
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
4102
    gradient_clipping_threshold=None,
Z
zhangjinchao01 已提交
4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
Q
qijun 已提交
4125 4126 4127
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
Z
zhangjinchao01 已提交
4128

X
xuwei06 已提交
4129
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
4130

Q
qijun 已提交
4131
settings_deprecated = dict(usage_ratio=1., )
Z
zhangjinchao01 已提交
4132 4133 4134 4135

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
Q
qijun 已提交
4136 4137
    start_pass=0, )

Z
zhangjinchao01 已提交
4138 4139 4140 4141 4142

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
Q
qijun 已提交
4143 4144
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
Z
zhangjinchao01 已提交
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

Q
qijun 已提交
4156

Z
zhangjinchao01 已提交
4157 4158 4159 4160
@config_func
def cluster_config(**args):
    pass

Q
qijun 已提交
4161

Z
zhangjinchao01 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

Q
qijun 已提交
4171

Z
zhangjinchao01 已提交
4172 4173 4174 4175
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
Q
qijun 已提交
4176

Z
zhangjinchao01 已提交
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
Q
qijun 已提交
4192
        get_config_arg=make_get_config_arg(config_args), )
Z
zhangjinchao01 已提交
4193 4194 4195 4196 4197

    funcs.update(g_extended_config_funcs)

    return funcs

Q
qijun 已提交
4198

Z
zhangjinchao01 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

Q
qijun 已提交
4215

Z
zhangjinchao01 已提交
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

Q
qijun 已提交
4228

Z
zhangjinchao01 已提交
4229 4230 4231 4232
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
4233

4234
_parse_config_hooks = set()
Y
Yu Yang 已提交
4235 4236


4237 4238 4239 4240 4241 4242 4243
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
Q
qijun 已提交
4244

Y
Yu Yang 已提交
4245

4246
def update_g_config():
Z
zhangjinchao01 已提交
4247
    '''
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


4271
def begin_parse():
Z
zhangjinchao01 已提交
4272
    init_config_environment()
4273 4274
    for hook in _parse_config_hooks:
        hook()
Z
zhangjinchao01 已提交
4275 4276 4277 4278 4279

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
4289 4290 4291 4292
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
4293

4294
    begin_parse()
X
xuwei06 已提交
4295 4296
    config_args = {}

Z
zhangjinchao01 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

4309 4310
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
4311
            make_config_environment("", config_args))
4312
        trainer_config()
H
hanchao 已提交
4313
    else:
4314 4315
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
Z
zhangjinchao01 已提交
4316

4317
    return update_g_config()
Z
zhangjinchao01 已提交
4318 4319


4320
def parse_config_and_serialize(trainer_config, config_arg_str):
Z
zhangjinchao01 已提交
4321
    try:
4322
        config = parse_config(trainer_config, config_arg_str)
Z
zhangjinchao01 已提交
4323 4324 4325 4326 4327 4328
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

Q
qijun 已提交
4329

Z
zhangjinchao01 已提交
4330 4331 4332 4333 4334 4335 4336 4337
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise