softmax_op.cc 7.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16 17 18

#include <string>

K
Kexin Zhao 已提交
19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29
namespace paddle {
namespace operators {

D
dongzhihong 已提交
30
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31 32 33
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
37 38
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
39 40 41

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(x_dims.size() == 2UL,
C
caoying03 已提交
42
                   "The input of softmax op must be a matrix.");
F
fengjiayi 已提交
43
    ctx->SetOutputDim("Out", x_dims);
Q
Qiao Longfei 已提交
44
    ctx->ShareLoD("X", /*->*/ "Out");
45
  }
46 47 48 49 50

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
51
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
52 53 54
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

55
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
56
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
57
      library_ = framework::LibraryType::kCUDNN;
58 59
    }
#endif
60 61 62 63
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
64
      layout_ = framework::DataLayout::kMKLDNN;
65 66
    }
#endif
K
Kexin Zhao 已提交
67 68 69 70

    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("X")->type());
    if (input_data_type == framework::proto::VarType::FP16) {
71 72
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
K
Kexin Zhao 已提交
73 74
    }

M
mozga-intel 已提交
75
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
76
                                   library_);
77
  }
78
};
79

D
dongzhihong 已提交
80
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
81
 public:
Y
Yu Yang 已提交
82
  void Make() override {
83
    AddInput("X",
C
caoying03 已提交
84 85
             "The input tensor of softmax. "
             "2-D with shape [batch_size, input_feature_dimensions].");
86 87
    AddOutput("Out", "The normalized values with the same shape as X.")
        .Reuse("X");
88 89 90 91 92 93 94 95 96 97 98
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
99 100 101
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
102 103 104
    AddAttr<bool>("is_test",
                  "Disable epsilon adding to softmax results. Used by MKLDNN.")
        .SetDefault(false);
C
caoying03 已提交
105
    AddComment(R"DOC(
106 107 108
Softmax Operator.

The input of the softmax operator is a 2-D tensor with shape N x K (N is the
C
caoying03 已提交
109 110 111 112 113
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.

For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
114 115 116 117 118 119
values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
120

121
For each row $i$ and each column $j$ in Input(X), we have:
F
fengjiayi 已提交
122
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
123 124

)DOC");
125 126 127
  }
};

D
dongzhihong 已提交
128
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
129 130 131
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

132
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
133 134 135 136 137 138
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
139

140 141
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
142
  }
143 144 145 146 147

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
148
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
149 150
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
mozga-intel 已提交
151

152
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
153
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
154
      library_ = framework::LibraryType::kCUDNN;
155 156
    }
#endif
J
Jacek Czaja 已提交
157 158 159 160 161 162 163
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
164 165
    auto input_data_type = framework::ToDataType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type());
J
Jacek Czaja 已提交
166 167 168 169 170 171 172
    if (input_data_type == framework::proto::VarType::FP16) {
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
173
  }
D
dongzhihong 已提交
174 175
};

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
class SoftmaxOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("softmax_grad");

    op->SetInput("Out", Output("Out"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};
194 195 196
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
197
namespace ops = paddle::operators;
D
dongzhihong 已提交
198

Y
Yang Yang 已提交
199
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
200
                  ops::SoftmaxOpGradMaker);
201
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
202
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
203 204
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
205 206
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
207 208
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);