elementwise_sub_op.h 2.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
   http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

F
fengjiayi 已提交
15
#pragma once
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/elementwise_op_function.h"
G
gongweibao 已提交
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25
template <typename T>
struct SubFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
27
class ElementwiseSubKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
28 29
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
30 31 32 33 34 35 36
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
37 38
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          SubFunctor<T>(), z);
G
gongweibao 已提交
39 40 41 42
  }
};

template <typename T>
C
chengduoZH 已提交
43 44
struct SubGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
45 46 47
};

template <typename T>
C
chengduoZH 已提交
48 49
struct SubGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout; }
G
gongweibao 已提交
50 51
};

Q
QI JUN 已提交
52
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
53
class ElementwiseSubGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
54 55
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
56 57 58 59 60 61
    using Tensor = framework::Tensor;

    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
62 63 64 65 66
    // skip out, x, y
    auto* out = dout;
    auto *x = dout, *y = dout;

    ElemwiseExplicitGradCompute<DeviceContext, T, SubGradDX<T>, SubGradDY<T>>(
C
chengduoZH 已提交
67
        ctx, *x, *y, *out, *dout, axis, dx, dy, SubGradDX<T>(), SubGradDY<T>());
G
gongweibao 已提交
68 69 70 71
  }
};
}  // namespace operators
}  // namespace paddle