test_sequence_expand.py 3.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaoshuang 已提交
15 16 17 18 19
import unittest
import numpy as np
from op_test import OpTest


W
wanghaoshuang 已提交
20
class TestSequenceExpand(OpTest):
W
wanghaoshuang 已提交
21
    def set_data(self):
W
wanghaoshuang 已提交
22 23 24 25
        x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
        y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
        y_lod = [[0, 1, 4, 8]]
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
W
wanghaoshuang 已提交
26 27

    def compute(self):
W
wanghaoshuang 已提交
28 29
        x = self.inputs['X']
        x_data, x_lod = x if type(x) == tuple else (x, None)
W
wanghaoshuang 已提交
30
        y_data, y_lod = self.inputs['Y']
Y
yangyaming 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

        if hasattr(self, 'attrs'):
            ref_level = self.attrs['ref_level']
        else:
            ref_level = len(y_lod) - 1

        out = np.zeros(shape=((0, ) + x_data.shape[1:]), dtype=x_data.dtype)

        if x_lod is None:
            x_idx = [i for i in xrange(x_data.shape[0] + 1)]
        else:
            x_idx = x_lod[0]
            out_lod = [[0]]

        for i in xrange(1, len(y_lod[ref_level])):
            repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1]
            x_len = x_idx[i] - x_idx[i - 1]
            if repeat_num > 0:
                x_sub = x_data[x_idx[i - 1]:x_idx[i], :]
                x_sub = np.repeat(x_sub, repeat_num, axis=0)
                out = np.vstack((out, x_sub))
                if x_lod is not None:
                    for j in xrange(repeat_num):
                        out_lod[0].append(out_lod[0][-1] + x_len)

        if x_lod is None:
            self.outputs = {'Out': out}
        else:
            self.outputs = {'Out': (out, out_lod)}
W
wanghaoshuang 已提交
60 61

    def setUp(self):
W
wanghaoshuang 已提交
62
        self.op_type = 'sequence_expand'
W
wanghaoshuang 已提交
63 64 65 66 67 68
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

W
wanghaoshuang 已提交
69 70
    def test_check_grad(self):
        self.check_grad(["X"], "Out")
W
wanghaoshuang 已提交
71 72


W
wanghaoshuang 已提交
73
class TestSequenceExpandCase1(TestSequenceExpand):
W
wanghaoshuang 已提交
74 75 76 77
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
        x_lod = [[0, 2, 5]]
        y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
W
wanghaoshuang 已提交
78
        y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]]
Y
yangyaming 已提交
79 80
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
        self.attrs = {'ref_level': 0}
W
wanghaoshuang 已提交
81 82


W
wanghaoshuang 已提交
83
class TestSequenceExpandCase2(TestSequenceExpand):
W
wanghaoshuang 已提交
84 85 86 87
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
        x_lod = [[0, 1]]
        y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
Y
yangyaming 已提交
88
        y_lod = [[0, 2], [0, 2]]
W
wanghaoshuang 已提交
89
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
Y
yangyaming 已提交
90
        self.attrs = {'ref_level': 0}
W
wanghaoshuang 已提交
91 92


W
wanghaoshuang 已提交
93
class TestSequenceExpandCase3(TestSequenceExpand):
W
wanghaoshuang 已提交
94 95 96 97 98 99 100 101
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
        x_lod = [[0, 1, 2, 3, 4]]
        y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
        y_lod = [[0, 2, 4, 4, 6]]
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


102 103
class TestSequenceExpandCase4(TestSequenceExpand):
    def set_data(self):
Y
yangyaming 已提交
104 105 106
        data = [0.1, 0.3, 0.2, 0.15, 0.25, 0.2, 0.15, 0.25, 0.1, 0.3]
        x_data = np.array(data).reshape([5, 2]).astype('float32')
        x_lod = [[0, 2, 5]]
107 108 109 110 111
        y_data = np.random.uniform(0.1, 1, [2, 1]).astype('float32')
        y_lod = [[0, 1, 2], [0, 1, 2]]
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


W
wanghaoshuang 已提交
112 113
if __name__ == '__main__':
    unittest.main()