sum_mkldnn_op.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*Licensed under the Apache License, Version 2.0(the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. */

#include "paddle/fluid/operators/sum_op.h"
J
Jacek Czaja 已提交
28
#include "paddle/fluid/platform/mkldnn_reuse.h"
29

W
wanghuancoder 已提交
30 31 32 33 34 35 36 37 38 39
namespace paddle {
namespace framework {
class Tensor;
}  // namespace framework
namespace platform {
class CPUDeviceContext;
class MKLDNNDeviceContext;
}  // namespace platform
}  // namespace paddle

40 41 42
namespace paddle {
namespace operators {

T
tangwei12 已提交
43 44
using paddle::platform::CPUDeviceContext;
using paddle::platform::MKLDNNDeviceContext;
45 46
using platform::to_void_cast;

J
Jacek Czaja 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
template <typename T>
class SumMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::sum> {
 public:
  SumMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place,
                   const std::vector<framework::Variable*>& in_vars,
                   framework::LoDTensor* z, const std::string& uniq_name)

      : platform::MKLDNNHandlerT<T, dnnl::sum>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(framework::vectorize(z->dims()), uniq_name)),
        num_inputs_(0) {
    for (size_t i = 0; i < in_vars.size(); i++) {
      srcs_suffix_.push_back(std::string("-") + std::to_string(i));
    }

    if (!this->isCached()) {
      auto dst_tz = framework::vectorize<int64_t>(z->dims());
      auto src_tz = dst_tz;

J
Jacek Czaja 已提交
67
      std::vector<mkldnn::memory::desc> srcs_md;
J
Jacek Czaja 已提交
68 69 70 71 72 73
      for (size_t i = 0; i < in_vars.size(); i++) {
        auto& input_it = in_vars[i]->Get<framework::LoDTensor>();
        if (input_it.numel() == 0) {
          continue;
        }
        MKLDNNMemoryFormat input_format = input_it.format();
J
Jacek Czaja 已提交
74 75
        srcs_md.push_back(mkldnn::memory::desc(
            src_tz, platform::MKLDNNGetDataType<T>(), input_format));
J
Jacek Czaja 已提交
76 77 78 79
        ++num_inputs_;
      }
      std::vector<float> scales(num_inputs_, 1.0);

J
Jacek Czaja 已提交
80 81
      auto dst_md = mkldnn::memory::desc(
          dst_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);
J
Jacek Czaja 已提交
82 83 84 85 86 87 88 89

      this->AcquireForwardPrimitiveDescriptor(dst_md, scales, srcs_md);
    }
  }

  // (jczaja) sum oneDNN prim is not having .desc attribute so
  // we cannot use base AcquireForwardPrimitiveDescriptor
  void AcquireForwardPrimitiveDescriptor(
J
Jacek Czaja 已提交
90 91
      const mkldnn::memory::desc& dst_md, const std::vector<float>& scales,
      const std::vector<mkldnn::memory::desc>& srcs_md) {
J
Jacek Czaja 已提交
92 93 94 95 96
    // Sum op does not have backward so no passing from FWD to BWD is needed
    const std::string key_pd = this->key_ + "@fwd_pd";
    this->fwd_pd_ = std::static_pointer_cast<dnnl::sum::primitive_desc>(
        this->dev_ctx_.GetBlob(key_pd));
    if (this->fwd_pd_ == nullptr) {
J
Jacek Czaja 已提交
97 98
      this->fwd_pd_.reset(new dnnl::sum::primitive_desc(dst_md, scales, srcs_md,
                                                        this->engine_));
J
Jacek Czaja 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
      this->dev_ctx_.SetBlob(key_pd, this->fwd_pd_);
    }
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor& input, int i) {
    const T* input_data = input.data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
                                            to_void_cast<T>(input_data),
                                            "@src_mem_p" + srcs_suffix_[i]);
  }

  using platform::MKLDNNHandlerT<T, dnnl::sum>::AcquireDstMemory;

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(void) {
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(),
                                            "@dst_mem_p");
  }

  inline int GetNumInputs(void) { return num_inputs_; }

 protected:
  // isCached need to be overloaded as base one works on key_common
  bool isCached() {
    const std::string key_pd = this->key_ + "@fwd_pd";
    this->fwd_pd_ = std::static_pointer_cast<dnnl::sum::primitive_desc>(
        this->dev_ctx_.GetBlob(key_pd));

    const std::string key_p = this->key_ + "@fwd_p";
    return (this->dev_ctx_.GetBlob(key_p) != nullptr);
  }

 private:
  int num_inputs_;
  std::vector<std::string> srcs_suffix_;
};

136 137 138 139
template <typename T>
class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
140 141 142
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Sum must use CPUPlace"));
143 144
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto in_vars = ctx.MultiInputVar("X");
145 146 147

    PADDLE_ENFORCE_NE(in_vars.empty(), true, platform::errors::InvalidArgument(
                                                 "Input variable is empty."));
J
Jacek Czaja 已提交
148
    auto& input0 = in_vars[0]->Get<LoDTensor>();
149
    LoDTensor* output = ctx.Output<LoDTensor>("Out");
150

J
Jacek Czaja 已提交
151
    bool in_place = (input0.numel() > 0) && input0.IsSharedBufferWith(*output);
152

J
Jacek Czaja 已提交
153 154
    SumMKLDNNHandler<T> handler(dev_ctx, ctx.GetPlace(), in_vars, output,
                                ctx.OutputName("Out"));
155

J
Jacek Czaja 已提交
156 157 158 159
    // Create list of SRC MEMs
    std::vector<std::shared_ptr<mkldnn::memory>> srcs_mem;
    srcs_mem.reserve(handler.GetNumInputs());
    int input_index = 0;
160
    for (size_t i = 0; i < in_vars.size(); i++) {
J
Jacek Czaja 已提交
161
      auto& input_it = in_vars[i]->Get<framework::LoDTensor>();
162 163
      if (input_it.numel() == 0) {
        continue;
A
Adam 已提交
164
      }
J
Jacek Czaja 已提交
165 166
      srcs_mem.push_back(handler.AcquireSrcMemory(input_it, input_index));
      ++input_index;
167
    }
168

J
Jacek Czaja 已提交
169 170
    auto dst_mem = in_place ? handler.AcquireDstMemory()
                            : handler.AcquireDstMemory(output);
171

J
Jacek Czaja 已提交
172
    auto sum_p = handler.AcquireForwardPrimitive();
173

J
Jacek Czaja 已提交
174
    std::unordered_map<int, mkldnn::memory> args;
175
    for (size_t i = 0; i < srcs_mem.size(); ++i) {
J
Jacek Czaja 已提交
176
      args.insert({MKLDNN_ARG_MULTIPLE_SRC + i, *(srcs_mem[i])});
177 178 179
    }
    args.insert({MKLDNN_ARG_DST, *dst_mem});

J
Jacek Czaja 已提交
180 181
    mkldnn::stream astream(dev_ctx.GetEngine());
    sum_p->execute(astream, args);
182 183
    astream.wait();

J
Jacek Czaja 已提交
184 185
    // For in-place execution which sum does not have we need to fake it
    // so from oneDNN dst memory we reorder data into input
186
    if (in_place) {
J
Jacek Czaja 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199
      const std::string reorder_key = platform::CreateKey(
          framework::vectorize(output->dims()), ctx.OutputName("Out") + "-I");

      auto& in_out = in_vars[0]->Get<framework::LoDTensor>();
      auto output_tz = framework::vectorize<int64_t>(output->dims());
      platform::ReorderMKLDNNHandler reorder_handler(
          output_tz, output->type(), framework::ToMKLDNNDataType(in_out.type()),
          dev_ctx, dev_ctx.GetEngine(), reorder_key);

      auto target_mem = reorder_handler.AcquireDstMemory(
          output, in_out.format(), ctx.GetPlace());

      auto reorder_p = reorder_handler.AcquireReorder(target_mem, dst_mem);
200 201 202 203 204 205
      {
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
        reorder_p->execute(astream, *dst_mem, *target_mem);
        astream.wait();
      }
206
    }
J
Jacek Czaja 已提交
207 208
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_mem));
209 210 211 212 213 214
  }
};

}  // namespace operators
}  // namespace paddle

J
Jacek Czaja 已提交
215 216 217 218
REGISTER_OP_KERNEL(
    sum, MKLDNN, ::paddle::platform::CPUPlace,
    paddle::operators::SumMKLDNNOpKernel<paddle::platform::bfloat16>,
    paddle::operators::SumMKLDNNOpKernel<float>);