dataprovider_converter.py 10.1 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Y
yuyang18 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.trainer.PyDataProvider2 as dp2
import collections
import swig_paddle
Y
Yu Yang 已提交
18
import numpy
Y
Yu Yang 已提交
19
import itertools
20
from functools import reduce
Y
yuyang18 已提交
21 22 23 24 25

__all__ = ['DataProviderConverter']


class IScanner(object):
Y
Yu Yang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38
    """
    The scanner will scan Python object two passes, then convert it to Paddle's
    argument.

    In the first pass, `pre_scan` will be invoked by every data instance, and
    then invoke `finish_pre_scan` to arguments. And the second pass do the same
    thing except the functions changed to `scan`, `finish_scan`.

    During the first pass, a scanner may count the shape of input matrix and
    allocate memory for this argument. Then fill the data into this  argument
    in second pass.
    """

Y
yuyang18 已提交
39 40
    def __init__(self, input_type, pos):
        self.input_type = input_type
D
dangqingqing 已提交
41 42
        if not isinstance(self.input_type, dp2.InputType):
            raise ValueError("input type should be dataprovider2.InputType")
Y
yuyang18 已提交
43
        self.pos = pos
D
dangqingqing 已提交
44 45 46 47 48 49 50
        # data_in_gpu is used to indicate whether to create argument on GPU
        # or not in GPU mode. Now if using one thread (trainer_count=1),
        # trainer uses NeuralNetwork which needs to create argument on GPU
        # before calling forward function. So, set data_in_gpu to True.
        # Otherwise, trainer uses MultiGradientMachine which will transfer
        # data from CPU to GPU in the forward function, set data_in_gpu to
        # False in this case.
D
dangqingqing 已提交
51 52
        self.data_in_gpu = swig_paddle.isUsingGpu(
        ) and swig_paddle.getTrainerCount() == 1
Y
yuyang18 已提交
53

Y
Yu Yang 已提交
54
    def pre_scan(self, dat):
Y
Yu Yang 已提交
55 56 57 58 59 60
        """
        First pass scan method. During this method, the scanner could count the
        data number, and get the total memory size this batch would use.

        :param dat: The python object.
        """
Y
Yu Yang 已提交
61 62
        pass

63
    def finish_pre_scan(self, argument, dat=None):
Y
Yu Yang 已提交
64 65 66 67 68
        """
        Finish first scan pass. Allocate the memory.

        :param argument: Output arguments object.
        :type argument: swig_paddle.Arguments
69 70
        :param dat: Output arguments object.
        :type dat: The Python object, numpy.array or List.
Y
Yu Yang 已提交
71 72
        :return:
        """
Y
Yu Yang 已提交
73 74
        pass

Y
yuyang18 已提交
75
    def scan(self, dat):
Y
Yu Yang 已提交
76 77 78 79 80
        """
        Second pass scan method. Copy the data to arguments.

        :param dat: The python object.
        """
Y
yuyang18 已提交
81 82 83
        pass

    def finish_scan(self, argument):
Y
Yu Yang 已提交
84 85 86 87 88 89
        """
        Finish second pass. Finalize the resources, etc.

        :param argument: Output arguments object.
        :type argument: swig_paddle.Arguments
        """
Y
yuyang18 已提交
90 91 92 93
        pass


class DenseScanner(IScanner):
94 95 96 97
    """
    :type __mat__: numpy.ndarray
    """

Y
yuyang18 已提交
98 99
    def __init__(self, input_type, pos):
        IScanner.__init__(self, input_type, pos)
Y
Yu Yang 已提交
100
        self.__mat__ = None
101
        self.__shape__ = None
Y
Yu Yang 已提交
102 103 104 105 106
        self.__height__ = 0

    def pre_scan(self, dat):
        self.__height__ += 1

107 108 109 110 111 112 113
    def finish_pre_scan(self, argument, dat=None):
        self.__shape__ = numpy.array(dat).shape
        if len(self.__shape__) > 3:
            raise ValueError("The dimension of input is greater than 3.")
        dim = reduce(lambda x, y: x * y, self.__shape__)
        if len(self.__shape__) == 1:
            assert dim == self.input_type.dim
Y
Yu Yang 已提交
114
        self.__mat__ = numpy.ndarray(
115
            shape=(self.__height__, dim), dtype=numpy.float32)
Y
Yu Yang 已提交
116
        self.__height__ = 0
Y
yuyang18 已提交
117 118

    def scan(self, dat):
119 120 121
        if isinstance(dat, numpy.ndarray):
            assert self.__shape__ == dat.shape
            dat = dat.flatten()
Y
Yu Yang 已提交
122 123
        self.__mat__[self.__height__] = dat
        self.__height__ += 1
Y
yuyang18 已提交
124 125 126

    def finish_scan(self, argument):
        assert isinstance(argument, swig_paddle.Arguments)
127 128
        if self.__mat__.dtype != numpy.float32:
            self.__mat__ = self.__mat__.astype(numpy.float32)
129
        m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True,
D
dangqingqing 已提交
130
                                                    self.data_in_gpu)
Y
yuyang18 已提交
131
        argument.setSlotValue(self.pos, m)
132 133 134 135 136 137 138
        if len(self.__shape__) > 1:
            # The last-two dimenstions are the frame height and width.
            # For example, the layout is CHW for 3-D feature of image.
            # The H and W are the fram height and width.
            h, w = self.__shape__[-2:]
            argument.setSlotFrameHeight(self.pos, h)
            argument.setSlotFrameWidth(self.pos, w)
Y
yuyang18 已提交
139 140 141 142 143 144 145 146 147 148 149 150


class SparseBinaryScanner(IScanner):
    def __init__(self, input_type, pos):
        IScanner.__init__(self, input_type, pos)
        self.__rows__ = [0]
        self.__cols__ = []
        self.__height__ = 0
        self.__value__ = []

    def scan(self, dat):
        self.extend_cols(dat)
E
emailweixu 已提交
151
        self.__rows__.append(len(self.__cols__))
Z
Z-TAO 已提交
152
        self.__height__ += 1
Y
yuyang18 已提交
153 154 155 156 157 158

    def extend_cols(self, dat):
        self.__cols__.extend(dat)

    def finish_scan(self, argument):
        assert isinstance(argument, swig_paddle.Arguments)
159 160 161 162 163 164 165
        m = swig_paddle.Matrix.createSparse(
            self.__height__,
            self.input_type.dim,
            len(self.__cols__),
            len(self.__value__) == 0,
            False,  # trans
            False)  # TODO supoort GPU
Y
yuyang18 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
        assert isinstance(m, swig_paddle.Matrix)
        m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__)
        argument.setSlotValue(self.pos, m)


class SparseFloatScanner(SparseBinaryScanner):
    def __init__(self, input_type, pos):
        SparseBinaryScanner.__init__(self, input_type, pos)

    def extend_cols(self, dat):
        self.__cols__.extend((x[0] for x in dat))
        self.__value__.extend((x[1] for x in dat))


class IndexScanner(IScanner):
    def __init__(self, input_type, pos):
        IScanner.__init__(self, input_type, pos)
183 184 185 186 187 188
        self.__ids__ = None
        self.__idx__ = 0

    def pre_scan(self, dat):
        self.__idx__ += 1

189
    def finish_pre_scan(self, argument, dat=None):
190 191
        self.__ids__ = [0] * self.__idx__
        self.__idx__ = 0
Y
yuyang18 已提交
192 193

    def scan(self, dat):
194 195
        self.__ids__[self.__idx__] = dat
        self.__idx__ += 1
Y
yuyang18 已提交
196 197

    def finish_scan(self, argument):
D
dangqingqing 已提交
198
        ids = swig_paddle.IVector.create(self.__ids__, self.data_in_gpu)
Y
yuyang18 已提交
199 200 201 202 203 204 205 206 207 208 209
        assert isinstance(argument, swig_paddle.Arguments)
        argument.setSlotIds(self.pos, ids)


class SequenceScanner(IScanner):
    def __init__(self, input_type, pos, inner_scanner, setter):
        IScanner.__init__(self, input_type, pos)
        self.__seq__ = [0]
        self.__inner_scanner__ = inner_scanner
        self.__setter__ = setter

210 211 212 213
    def pre_scan(self, dat):
        for each in dat:
            self.__inner_scanner__.pre_scan(each)

214 215
    def finish_pre_scan(self, argument, dat=None):
        self.__inner_scanner__.finish_pre_scan(argument, dat)
216

Y
yuyang18 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    def scan(self, dat):
        self.__seq__.append(self.__seq__[-1] + self.get_size(dat))
        for each in dat:
            self.__inner_scanner__.scan(each)

    def finish_scan(self, argument):
        seq = swig_paddle.IVector.create(self.__seq__, False)
        self.__setter__(argument, self.pos, seq)
        self.__inner_scanner__.finish_scan(argument)

    def get_size(self, dat):
        if isinstance(self.__inner_scanner__, SequenceScanner):
            return sum(self.__inner_scanner__.get_size(item) for item in dat)
        else:
            return len(dat)


class DataProviderConverter(object):
    def __init__(self, input_types):
        self.input_types = input_types
        assert isinstance(self.input_types, collections.Sequence)
        for each in self.input_types:
            assert isinstance(each, dp2.InputType)

    def convert(self, dat, argument=None):
        if argument is None:
            argument = swig_paddle.Arguments.createArguments(0)
        assert isinstance(argument, swig_paddle.Arguments)
        argument.resize(len(self.input_types))

247 248 249 250
        scanners = [
            DataProviderConverter.create_scanner(i, each_type)
            for i, each_type in enumerate(self.input_types)
        ]
Y
yuyang18 已提交
251 252

        for each_sample in dat:
Y
Yu Yang 已提交
253 254 255
            for each_step, scanner in itertools.izip(each_sample, scanners):
                scanner.pre_scan(each_step)

256 257 258 259 260
        # Some scanners, like dense scanner, pre-allocate memory for mini-batch
        # in finish_pre_scan function. The dat[0] is used to calculate the size
        # of input data.
        for scanner, each_feature in itertools.izip(scanners, dat[0]):
            scanner.finish_pre_scan(argument, each_feature)
Y
Yu Yang 已提交
261 262 263

        for each_sample in dat:
            for each_step, scanner in itertools.izip(each_sample, scanners):
Y
yuyang18 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                scanner.scan(each_step)

        for scanner in scanners:
            scanner.finish_scan(argument)

        return argument

    def __call__(self, dat, argument=None):
        return self.convert(dat, argument)

    @staticmethod
    def create_scanner(i, each):
        assert isinstance(each, dp2.InputType)
        retv = None
        if each.type == dp2.DataType.Dense:
            retv = DenseScanner(each, i)
        elif each.type == dp2.DataType.Index:
            retv = IndexScanner(each, i)
        elif each.type == dp2.DataType.SparseNonValue:
            retv = SparseBinaryScanner(each, i)
        elif each.type == dp2.DataType.SparseValue:
            retv = SparseFloatScanner(each, i)
        assert retv is not None

        if each.seq_type == dp2.SequenceType.SUB_SEQUENCE:
289 290 291 292 293 294 295 296 297 298
            retv = SequenceScanner(
                each, i, retv,
                lambda a, p, seq: a.setSlotSubSequenceStartPositions(p, seq))

        if each.seq_type in [
                dp2.SequenceType.SUB_SEQUENCE, dp2.SequenceType.SEQUENCE
        ]:
            retv = SequenceScanner(
                each, i, retv,
                lambda a, p, seq: a.setSlotSequenceStartPositions(p, seq))
Y
yuyang18 已提交
299
        return retv