quantization_pass.py 87.8 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
28
from ....framework import _get_paddle_place
29

30 31
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
32 33
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
34
]
W
WangZhen 已提交
35

36 37 38 39 40 41 42 43 44
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

45 46 47 48
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

49
_out_scale_op_list = [
50 51 52 53
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
C
ceci3 已提交
54
    "matmul_v2",
55 56 57 58 59 60 61
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
62
    "dropout",
63 64
    "softmax",
    "batch_norm",
65
    "layer_norm",
66 67 68 69 70 71
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
72 73
    "elementwise_pow",
    "elementwise_sub",
74
    "scale",
75
    "slice",
76 77
    "hard_swish",
    "hard_sigmoid",
78
    "conv2d_transpose",
79 80 81 82
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
83 84 85 86
    "flatten",
    "flatten2",
    "transpose",
    "pad2d",
87
    "pad3d",
88
    "reshape",
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    "split",
    "flatten_contiguous_range",
    "squeeze",
    "squeeze2",
    "nearest_interp_v2",
    "fill_constant_batch_size_like",
    "bilinear_interp",
    "bilinear_interp_v2",
    "arg_max",
    "abs",
    "assign",
    "cast",
    "clip",
    "box_coder",
    "crop",
    "cumsum",
    "equal",
    "expand_v2",
    "fill_any_like",
    "fill_constant",
    "gelu",
    "instance_norm",
    "lookup_table",
    "lookup_table_v2",
    "norm",
    "p_norm",
    "pow",
    "reduce_mean",
    "stack",
    "top_k_v2",
    "unsqueeze",
    "unsqueeze2",
    "logical_and",
    "logical_not",
    "meshgrid",
    "roi_align",
    "strided_slice",
    "where",
    "grid_sampler",
    "tile",
    "group_norm",
    "reduce_sum",
    "square",
    "softplus",
    "gather",
    "shuffle_channel",
135 136
]

137 138 139
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
140
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
141
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
142
    "mul": [["X", "Y"], ["Out"]],
143
    "matmul": [["X", "Y"], ["Out"]],
C
ceci3 已提交
144
    "matmul_v2": [["X", "Y"], ["Out"]],
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
161
    "transpose2": [["X"], ["Out"]],
162 163 164 165 166 167 168 169 170
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
171
    "prelu": [["X", "Alpha"], ["Out"]],
172 173
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
174 175
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
176
    "layer_norm": [["X"], ["Y"]],
177
    "sigmoid": [["X"], ["Out"]],
178
    "elementwise_mul": [["X", "Y"], ["Out"]],
179
    "elementwise_pow": [["X", "Y"], ["Out"]],
180
    "scale": [["X"], ["Out"]],
181 182
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
183
    "gru": [["Input", "Weight"], ["Hidden"]],
184
    "lstm": [["Input", "Weight"], ["Hidden"]],
185
    "pad2d": [["X"], ["Out"]],
186
    "pad3d": [["X"], ["Out"]],
187 188
    "flatten": [["X"], ["Out"]],
    "flatten2": [["X"], ["Out"]],
C
cc 已提交
189
    "unsqueeze2": [["X"], ["Out"]],
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    "unsqueeze2": [["X"], ["Out"]],
    "flatten_contiguous_range": [["X"], ["Out"]],
    "split": [["X"], ["Out"]],
    "squeeze2": [["X"], ["Out"]],
    "nearest_interp_v2": [["X"], ["Out"]],
    "bilinear_interp": [["X"], ["Out"]],
    "bilinear_interp_v2": [["X"], ["Out"]],
    "fill_constant_batch_size_like": [["Input"], ["Out"]],
    "arg_max": [["X"], ["Out"]],
    "abs": [["X"], ["Out"]],
    "assign": [["X"], ["Out"]],
    "cast": [["X"], ["Out"]],
    "clip": [["X"], ["Out"]],
    "box_coder": [["PriorBox"], ["OutputBox"]],
    "crop": [["X"], ["Out"]],
    "cumsum": [["X"], ["Out"]],
    "expand_v2": [["X"], ["Out"]],
    "fill_any_like": [["X"], ["Out"]],
    "fill_constant": [[], ["Out"]],
    "gelu": [["X"], ["Out"]],
    "instance_norm": [["X"], ["Out"]],
    "lookup_table": [["W", "Ids"], ["Out"]],
    "lookup_table_v2": [["W", "Ids"], ["Out"]],
    "norm": [["X"], ["Norm"]],
    "p_norm": [["X"], ["Out"]],
    "pow": [["X"], ["Out"]],
    "reduce_mean": [["X"], ["Out"]],
    "stack": [["X"], ["Y"]],
    "top_k_v2": [["X"], ["Out", "Indices"]],
    "logical_and": [["X", "Y"], ["Out"]],
    "logical_not": [["X"], ["Out"]],
    "meshgrid": [["X"], ["Out"]],
    "roi_align": [["X", "ROIs"], ["Out"]],
    "strided_slice": [["Input"], ["Out"]],
    "where": [["Condition", "X", "Y"], ["Out"]],
    "grid_sampler": [["X", "Grid"], ["Output"]],
    "tile": [["X"], ["Out"]],
    "group_norm": [["X"], ["Y", "Mean", "Variance"]],
    "reduce_sum": [["X"], ["Out"]],
    "square": [["X"], ["Out"]],
    "softplus": [["X"], ["Out"]],
    "shuffle_channel": [["X"], ["Out"]],
232 233
}

234 235
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

C
ceci3 已提交
236 237 238
_channelwise_quant_axis1_ops = [
    'conv2d_transpose', 'mul', 'matmul', 'matmul_v2'
]
239

W
WangZhen 已提交
240

241
def _get_op_input_var_names(op):
242 243 244 245 246 247 248
    """
    Get the input var names of the op.
    Args:
        op(IrNode, Operator): the input op.
    Returns:
        input_var_names or None.
    """
249 250 251 252 253
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
254 255 256
    if op_name not in _op_real_in_out_name:
        return []

257 258 259 260 261 262 263 264 265 266
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


267 268 269 270 271 272
def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
273 274 275
    if op_name not in _op_real_in_out_name:
        return None

276 277 278 279 280 281 282 283 284
    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


285 286 287 288 289 290 291
def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
292 293 294
    if op_name not in _op_real_in_out_name:
        return []

295 296 297 298 299 300 301 302 303 304
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


305 306 307 308 309 310
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
311 312 313
    if op_name not in _op_real_in_out_name:
        return None

314 315 316 317 318 319 320 321 322 323
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


324 325 326 327
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
328
        'The scope cannot be set None.'
329
    assert place is not None, \
330
        'The place cannot be set None.'
331 332 333 334
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


335 336 337 338 339
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
340 341 342 343
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
344 345 346
    return is_input_all_not_persistable


347 348 349 350 351 352 353 354 355 356 357 358 359 360
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


361
class QuantizationTransformPass(object):
362
    """
363 364
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
365
    """
366
    _supported_quantizable_op_type = [
X
XGZhang 已提交
367 368
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul',
        'matmul_v2'
369
    ]
370

W
WangZhen 已提交
371
    def __init__(self,
372
                 scope=None,
373
                 place=None,
W
WangZhen 已提交
374 375 376 377
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
378
                 window_size=10000,
379
                 moving_rate=0.9,
380
                 skip_pattern=['skip_quant'],
381 382 383 384 385 386 387
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
388
        r"""
389
        Constructor.
390

W
WangZhen 已提交
391
        Args:
392
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
393 394
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
395 396 397
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
398
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
399
                the bias is not quantized.
400 401
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
402 403 404 405 406
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
407
            weight_quantize_type(str): quantization type for weights,
408 409 410
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
411 412
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
413
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
414
                will be presented in the name scope of an op. When the skip pattern is
415
                detected in an op's name scope, the corresponding op will not be quantized. 
416
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
417 418
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
446 447
                Default is None.

448

W
WangZhen 已提交
449 450
        Examples:
        .. code-block:: python
451 452 453 454
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
455
            from paddle.fluid.contrib.slim.graph import IrGraph
456 457
            from paddle.fluid import core

458
            graph = IrGraph(core.Graph(program.desc), for_test=False)
459
            place = fluid.CPUPlace()
460
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
461
            place)
462
            transform_pass.apply(graph)
W
WangZhen 已提交
463
        """
464
        self._scope = scope
465
        self._place = _get_paddle_place(place)
466 467
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
468
        self._skip_pattern = skip_pattern
469 470 471 472 473 474
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
475 476 477 478
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
479 480
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
481 482
        if activation_quantize_type not in quant_type:
            raise ValueError(
483 484 485
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
486 487
        if weight_quantize_type not in quant_type:
            raise ValueError(
488
                "Unknown weight_quantize_type: '%s'. It can only be "
489 490
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
491

492 493 494
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
495
        self._moving_rate = moving_rate
W
WangZhen 已提交
496

497 498
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
499
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
500
                op + " is not supported for quantization."
501 502
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
503
        ]
504 505
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
506

507 508 509
        self.create_var_map = {}
        self.create_op_map = {}

510
    def apply(self, graph):
511 512 513 514 515 516 517
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
518 519
        Returns:
            None
520
        """
W
WangZhen 已提交
521
        assert isinstance(graph,
522 523
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
524 525
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
526
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
527
        processed_vars = []
W
WangZhen 已提交
528

529
        def _quant_preprocess(op_node):
530 531 532
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
533 534
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
535 536
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
537 538
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
539

540
            if user_skipped:
541
                op_node.op()._set_attr("skip_quant", True)
542
                op_node.op()._set_attr("with_quant_attr", True)
543

W
WangZhen 已提交
544
        def _transform_forward(graph, op):
545
            op.op()._set_attr("quantization_type", "qat_with_weight")
546
            op.op()._set_attr("with_quant_attr", True)
547 548
            inputs = op.inputs
            for var_node in inputs:
549 550
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
551 552 553
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
554 555 556
                    name = var_node.name()
                    if name in processed_vars:
                        continue
557 558
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
588
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
589
                        else self._activation_bits
590 591
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
592 593 594 595 596 597 598 599
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
600 601
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
602
                            graph, var_node, name, quant_bits, quant_type)
603 604
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
605
                    dequantized_vars[name] = dequant_var_node
606
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
607 608 609

        def _transform_backward(graph, op):
            for var_node in op.inputs:
610 611
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
612 613
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
614
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
615

X
XGZhang 已提交
616 617 618 619 620 621 622 623 624 625
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

626
        if not self._is_test:
W
WangZhen 已提交
627
            self._create_global_step(graph)
628
        ops = graph.all_op_nodes()
629 630 631 632 633 634
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
635 636
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
637 638
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
639
        for op in ops:
640
            if op.name() in self._quantizable_ops:
X
XGZhang 已提交
641
                if not self._is_skip_quant(graph, op) and _has_weight(op):
642
                    _transform_forward(graph, op)
W
WangZhen 已提交
643 644
        # The loop for renaming the inputs of backward op.
        for op in ops:
X
XGZhang 已提交
645
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
646
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
647
        graph.resolve_hazard()
648
        return graph
W
WangZhen 已提交
649

W
WangZhen 已提交
650
    def _create_global_step(self, graph):
651 652
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
653
            counter_name = cpt.to_text('@STEP_COUNTER@')
654
            for node in graph.all_var_nodes():
W
WangZhen 已提交
655
                if node.name() == counter_name:
656 657
                    self._global_step = node
            if self._global_step is None:
658
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
659 660 661 662
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
663 664 665 666 667 668
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
669 670
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
671
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
672 673
                increment_op = graph.create_op_node(
                    op_type='increment',
674 675 676 677 678
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
679 680
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
681 682 683
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
684

685
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
686 687 688 689
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
690 691
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
692
        elif quant_type == 'range_abs_max':
693
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
694
                                                       quant_bits)
695
        elif quant_type == 'moving_average_abs_max':
696 697
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
698

699
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
700 701 702 703 704 705
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
706
            name=self._quantized_var_name(name),
707 708 709
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
710
        scale_var_node = graph.create_persistable_node(
711
            name=self._quantized_scale_name(name),
712
            var_type=var_node.type(),
713
            shape=[1],
714
            var_dtype=var_node.dtype())
715 716 717 718 719 720 721 722
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
723 724
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
725 726 727 728
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
729 730 731
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
732 733 734
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
735 736
        return quant_var_node, scale_var_node

737
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
738 739 740 741 742 743
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
744
            name=self._quantized_var_name(name),
745 746 747
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
748

749
        scale_in_node = graph.create_persistable_node(
750
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
751 752
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
753
            var_dtype=var_node.dtype())
754 755
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
756 757 758 759 760 761
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
762 763 764 765 766

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

767
        if not self._is_test:
W
WangZhen 已提交
768
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
769
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
770 771
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
772
                shape=[self._window_size],
773
                var_dtype=var_node.dtype())
774 775
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
776 777 778 779 780 781 782
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

783
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
784 785
            outputs['OutScales'] = scales_node
        attrs = {
786
            'window_size': self._window_size,
W
WangZhen 已提交
787
            'bit_length': quant_bits,
788 789
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
790 791 792 793 794 795 796
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

797 798 799 800
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
801

802 803 804
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
805 806 807

        return quant_var_node, scale_out_node

808
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
809 810 811 812
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
813
            name=self._quantized_var_name(name),
814 815 816 817
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
818
            name=self._quantized_scale_name(name),
819 820 821
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
822 823
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
824 825 826 827 828 829
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
830 831 832 833 834 835 836 837 838 839

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
840 841
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
842
            _init_var_node(
843
                state_in_node,
844 845 846 847
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
848 849 850 851 852
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
853 854 855 856 857 858
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

895 896
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
897 898 899 900 901 902
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
903
            name=self._quantized_var_name(name),
904 905 906
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
907
        scale_var_node = graph.create_persistable_node(
908
            name=self._quantized_scale_name(name),
909
            var_type=var_node.type(),
910
            shape=[var_node.shape()[quant_axis]],
911
            var_dtype=var_node.dtype())
912 913 914 915 916 917 918 919
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
920 921 922 923
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
924
                'quant_axis': quant_axis,
925
                'is_test': self._is_test,
926 927 928 929 930 931 932 933 934 935
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
936 937 938 939 940 941 942 943
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
944 945 946
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
947 948 949
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
950 951 952 953
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
954 955 956
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
957 958 959
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
960 961
        return dequant_var_node

962
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
963
                                   quant_bits, quant_axis):
964 965 966 967 968 969 970 971 972 973 974 975 976 977
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
978
                'quant_axis': quant_axis,
979 980 981 982 983 984 985 986 987 988 989
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
1075
                graph.out_node_mapping_table[out_node.name] = var_node.name()
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1179
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1180 1181
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1182

1183
    def _is_skip_quant(self, graph, op_node):
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1196 1197 1198
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1199 1200
        return is_skip

W
WangZhen 已提交
1201 1202 1203 1204 1205

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
1206
                 bias_correction=False,
W
WangZhen 已提交
1207 1208
                 weight_bits=8,
                 activation_bits=8,
1209
                 weight_quantize_type='abs_max',
1210
                 quantizable_op_type=None):
1211 1212
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1213
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1214
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1215 1216
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1217 1218 1219

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1220 1221
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
1222 1223
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
1224 1225 1226 1227 1228
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1229 1230
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1231
        """
W
WangZhen 已提交
1232 1233 1234 1235 1236
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
1237
        self._bias_correction = bias_correction
1238
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1239 1240 1241
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1242 1243
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1244 1245
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1246
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1247 1248

    def apply(self, graph):
1249 1250 1251 1252 1253
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1254 1255
        Returns:
            None
1256
        """
1257
        # Get input scales in fake quant op and process weights
1258 1259
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1260 1261 1262
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1263
                input_arg_name = op_node.input('X')[0]
1264 1265 1266 1267
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1280
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1281
                        scale_v = scale_v[0]
W
WangZhen 已提交
1282
                    else:
1283
                        scale_v = scale_v.tolist()
1284
                    self._quant_var_scale_map[input_arg_name] = scale_v
1285
                    # Quantize weight and restore
W
WangZhen 已提交
1286
                    param_v = self._load_var(input_arg_name)
1287 1288 1289 1290 1291 1292 1293
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
X
XGZhang 已提交
1294 1295 1296 1297
                        param_v.copy(), scale_v, self._weight_bits, quant_axis)
                    if self._bias_correction == True:
                        quantized_param_v = self._bias_correction_w(
                            param_v, quantized_param_v, scale_v, quant_axis)
W
WangZhen 已提交
1298
                    self._restore_var(input_arg_name, quantized_param_v)
1299
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1300

1301
        # Remove all fake dequant op
1302
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1303 1304 1305 1306 1307
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1308
        # Insert post dequant op
1309
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1310
        for op_node in ops:
1311 1312 1313
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1314
                if self._weight_quantize_type == 'channel_wise_abs_max':
1315 1316
                    quant_axis = 1 if op_node.name() in \
                        _channelwise_quant_axis1_ops else 0
1317 1318
                    self._insert_post_channel_dequant_op(graph, op_node,
                                                         quant_axis)
1319 1320
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1321

1322
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1323 1324
        for op_node in ops:
            for var_node in op_node.inputs:
1325 1326 1327
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1328 1329 1330 1331
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1332
        graph.resolve_hazard()
1333
        return graph
W
WangZhen 已提交
1334 1335

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1336 1337
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1338 1339
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1340
        else:
1341 1342
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1343
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1344

1345
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1346 1347 1348
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1349 1350 1351 1352 1353
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1354 1355 1356
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1357
            scale_v = self._quant_var_scale_map[original_var_name]
1358 1359 1360 1361 1362 1363 1364 1365
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1366
                scale_var_node = self._quant_var_scale_map[original_var_name]
1367

1368
        if len(op_node.output_arg_names()) != 1:
1369 1370 1371
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1372 1373
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1374 1375 1376 1377 1378
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1379 1380
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1381 1382 1383
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1384 1385 1386 1387 1388
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
X
XGZhang 已提交
1389 1390 1391
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1392 1393
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1394 1395 1396 1397
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1398
                'quant_axis': quant_axis,
1399 1400
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1411
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1412 1413
        return dequant_var_node

W
WangZhen 已提交
1414
    def _insert_post_dequant_op(self, graph, op_node):
1415
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1416 1417 1418
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1419
        for var_node in op_node.inputs:
W
WangZhen 已提交
1420
            name = var_node.name()
1421 1422 1423 1424 1425
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1426
                new_in.clear_outputs()
W
WangZhen 已提交
1427 1428
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1429
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1430 1431 1432 1433
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1434
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1435
                max_range *= param_range / scale_v
W
WangZhen 已提交
1436
            else:
1437
                max_range *= act_range
1438
                assert isinstance(scale_v, IrNode)
1439
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1440

1441
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1442 1443 1444
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1445 1446
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1447 1448
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1449 1450 1451
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1452 1453
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1454 1455 1456 1457
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1458 1459 1460 1461 1462 1463
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1464
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1465 1466 1467 1468 1469
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1470 1471 1472
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1473 1474 1475

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1476
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1477 1478 1479 1480 1481 1482
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1483 1484 1485 1486 1487 1488
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1512
    def _is_float(self, v):
W
WangZhen 已提交
1513 1514 1515
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1516 1517
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1518 1519 1520 1521 1522 1523 1524
        bnt = (1 << (num_bits - 1)) - 1

        def _clip(x, scale):
            x[x > scale] = scale
            x[x < -scale] = -scale
            return x

1525 1526
        if isinstance(scale, list):
            for i, s in enumerate(scale):
X
XGZhang 已提交
1527 1528
                if s == 0.0:
                    s = 1e-8
1529
                if quant_axis == 0:
1530 1531
                    x[i] = _clip(x[i], s)
                    x[i] = np.round(x[i] / s * bnt)
1532
                else:
1533 1534
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = np.round(x[:, i] / s * bnt)
1535
        else:
X
XGZhang 已提交
1536
            scale = 1e-8 if scale == 0.0 else scale
1537 1538 1539
            x = _clip(x, scale)
            x = np.round(x / scale * bnt)
        return x
1540

X
XGZhang 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    def _bias_correction_w(self, x, x_quant, scale_v, quant_axis):
        '''
        Bias correction for weight
        '''
        eps = 1e-8
        bnt = (1 << (self._weight_bits - 1)) - 1
        x_dequant = x_quant.copy()
        if isinstance(scale_v, list):
            if quant_axis == 0:
                for i, s in enumerate(scale_v):
                    x_dequant[i] = x_dequant[i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
                std_orig = x.reshape(x.shape[0], -1).std(-1)
                std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
                std_bias = std_orig / (std_quant + eps)
            else:
                for i, s in enumerate(scale_v):
                    x_dequant[:, i] = x_quant[:, i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = np.array([
                    quant_bias[:, i].mean() for i in range(quant_bias.shape[1])
                ])
                std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
                std_quant = np.array(
                    [x_dequant[:, i].std() for i in range(x_dequant.shape[1])])
                std_bias = std_orig / (std_quant + eps)
        else:
            x_dequant = x_quant * scale_v / bnt
            mean_bias = (x - x_dequant).mean()
            std_bias = x.std() / (x_dequant.std() + eps)
        if mean_bias.ndim == 1:
            std_bias = np.resize(std_bias, x.shape)
            mean_bias = np.resize(mean_bias, x.shape)

        x_dequant = (mean_bias + x_dequant) * std_bias
        quantized_param_v = self._quant(x_dequant, scale_v, self._weight_bits,
                                        quant_axis)
        return quantized_param_v

1581 1582

class ConvertToInt8Pass(object):
1583
    def __init__(self, scope, place, quantizable_op_type=None):
1584 1585 1586 1587 1588
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1589 1590 1591
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1592 1593
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1594
        """
1595 1596 1597 1598 1599
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1600
        self._place = _get_paddle_place(place)
1601 1602

    def apply(self, graph):
1603
        """
T
tianshuo78520a 已提交
1604 1605
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1606 1607 1608

        Args:
            graph(IrGraph): the applied graph.
1609 1610
        Returns:
            None
1611
        """
1612 1613
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1614 1615
        input_map = {}
        for op_node in ops:
1616 1617
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1630
        graph.resolve_hazard()
1631 1632 1633 1634
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1635
        int8_var_node = graph.create_persistable_node(
1636
            name=cpt.to_text(int8_var_node_name),
1637 1638
            var_type=var_node.type(),
            shape=var_node.shape(),
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1654
        ops = graph.all_op_nodes()
1655 1656 1657 1658 1659 1660
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1661 1662 1663 1664 1665 1666
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1667 1668 1669 1670 1671
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1672
        """
T
tianshuo78520a 已提交
1673
        This pass is used to convert the frozen graph for paddle-mobile execution.
1674
        """
1675 1676
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1677 1678

    def apply(self, graph):
1679 1680 1681 1682 1683 1684 1685
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1686 1687
        Returns:
            None
1688
        """
1689
        ops = graph.all_op_nodes()
1690 1691 1692
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1693
                op_node.set_type('quantize')
1694 1695 1696 1697 1698 1699 1700
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1701
                op_node.set_type('dequantize')
1702 1703 1704 1705 1706 1707
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1708
        graph.resolve_hazard()
1709
        return graph
1710 1711


1712
class OutScaleForTrainingPass(object):
1713 1714 1715 1716 1717 1718 1719
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1720 1721 1722
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1723 1724 1725
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1726
        self._place = _get_paddle_place(place)
1727 1728
        self._moving_rate = moving_rate
        self._is_test = None
1729
        self._teller_set = _out_scale_op_list
1730 1731 1732 1733 1734 1735 1736 1737 1738

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1739 1740
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1741
        self._is_test = graph.is_test()
1742 1743 1744 1745 1746 1747 1748
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1749 1750 1751 1752
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1753 1754 1755 1756 1757
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1758 1759 1760 1761 1762 1763 1764 1765
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1766
                ins = {'X': in_node}
1767
                outs = {'OutScale': scale_node}
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1828
class OutScaleForInferencePass(object):
1829 1830 1831 1832 1833 1834 1835 1836 1837
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1838
        self._teller_set = _out_scale_op_list
1839 1840 1841 1842 1843 1844 1845 1846 1847

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1848 1849
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1850 1851 1852
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1853 1854
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1855 1856 1857 1858 1859 1860
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1861
                    scale_name = self._scale_name(var_name)
1862 1863 1864 1865 1866 1867 1868
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1869 1870 1871 1872 1873

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1874
                        + "_threshold", float(scale_value))
1875
                    op_node.op()._set_attr("with_quant_attr", True)
1876 1877 1878 1879 1880 1881 1882 1883
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1884 1885 1886


class AddQuantDequantPass(object):
1887 1888 1889 1890
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1891
    _supported_quantizable_op_type = [
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
        "pool2d",
        "elementwise_add",
        "concat",
        "softmax",
        "argmax",
        "transpose",
        "equal",
        "gather",
        "greater_equal",
        "greater_than",
        "less_equal",
        "less_than",
        "mean",
        "not_equal",
        "reshape",
        "reshape2",
        "dropout",
        "bilinear_interp",
        "nearest_interp",
        "trilinear_interp",
        "slice",
        "squeeze",
        "elementwise_sub",
        "mul",
        "matmul",
        "relu",
        "relu6",
        "leaky_relu",
        "tanh",
        "swish",
        "scale",
        "transpose",
        "transpose2",
        "sigmoid",
        "pad2d",
        "flatten",
        "flatten2",
        "batch_norm",
        "layer_norm",
        "matmul_v2",
        "split",
        "flatten_contiguous_range",
        "squeeze2",
        "nearest_interp_v2",
        "bilinear_interp",
        "bilinear_interp_v2",
        "fill_constant_batch_size_like",
        "arg_max",
        "abs",
        "assign",
        "cast",
        "clip",
        "box_coder",
        "crop",
        "cumsum",
        "elementwise_mul",
        "elementwise_pow",
        "expand_v2",
        "fill_any_like",
        "fill_constant",
        "gelu",
        "hard_sigmoid",
        "hard_swish",
        "instance_norm",
        "lookup_table",
        "lookup_table_v2",
        "norm",
        "p_norm",
        "pad3d",
        "pow",
        "prelu",
        "reduce_mean",
        "unsqueeze",
        "unsqueeze2",
        "logical_and",
        "logical_not",
        "meshgrid",
        "roi_align",
        "strided_slice",
        "where",
        "grid_sampler",
        "tile",
        "group_norm",
        "reduce_sum",
        "square",
        "softplus",
        "shuffle_channel",
1979 1980
    ]

1981 1982 1983
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1984 1985 1986 1987 1988
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1989
                 skip_pattern=["skip_quant"],
1990
                 quantizable_op_type=["elementwise_add", "pool2d"],
1991
                 is_full_quantized=False):
1992
        """
1993
        Constructor.
1994 1995 1996

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1997 1998 1999
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
2000 2001 2002 2003 2004 2005 2006 2007
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
2008
                quantized. Default is ["elementwise_add", "pool2d"]. 
2009 2010 2011 2012
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
2013 2014
        """
        self._scope = scope
2015
        self._place = _get_paddle_place(place)
2016 2017 2018
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
2019
        self._skip_pattern = skip_pattern
2020 2021 2022 2023 2024 2025 2026

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
2027
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
2028
                    op_type + " is not supported for quantization."
2029 2030 2031 2032
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

2033 2034
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
2035 2036 2037

    def apply(self, graph):
        """
2038 2039
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
2040

2041 2042
        Args:
            graph(IrGraph): the target graph.
2043 2044
        Returns:
            None
2045 2046 2047 2048
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
2049 2050
        dequantized_vars_map = collections.OrderedDict()

2051 2052 2053
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
2054
            if op_node.name() in self._quantizable_op_type:
2055
                is_skip = False
2056
                if isinstance(self._skip_pattern, list):
2057
                    is_skip = op_node.op().has_attr("op_namescope") and \
2058 2059
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
2060
                    is_skip = op_node.op().has_attr("op_namescope") and \
2061
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
2062 2063 2064
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
2065
                    (not _is_input_all_not_persistable(graph, op_node)):
2066
                    continue
2067

2068 2069 2070
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
2071
                op_node.op()._set_attr("with_quant_attr", True)
2072
                arg_names = _get_op_input_var_names(op_node)
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
2083

2084 2085
        # Backward stage, update input link
        for op_node in all_op_nodes:
2086
            if op_node.name() in self._quantizable_grad_op_type:
2087 2088 2089 2090 2091 2092 2093 2094
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node