nll_loss_grad_kernel.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/nll_loss_grad_kernel.h"

#include <memory>
#include <string>
#include "paddle/fluid/operators/math.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {
template <typename T>
static void nll_loss_grad_1D(T* dx_data,
                             const T* dout_data,
                             const int64_t* label_data,
                             const T* weight_data,
                             const T* total_weight_data,
                             const int64_t batch_size,
                             const int64_t n_classes,
                             const std::string reduction,
                             const int64_t ignore_index) {
  if (reduction == "none") {
    for (int i = 0; i < batch_size; i++) {
      const auto cur_label = label_data[i];
      if (cur_label == ignore_index) {
        continue;
      }
      const auto cur_weight =
          weight_data ? weight_data[cur_label] : static_cast<T>(1);
      dx_data[i * n_classes + cur_label] = -dout_data[i] * cur_weight;
    }
    return;
  }

  const T dout_val = *dout_data;
  const T total_weight_val = *total_weight_data;
  for (int i = 0; i < batch_size; i++) {
    const auto cur_label = label_data[i];
    if (cur_label == ignore_index) {
      continue;
    }
    const auto cur_weight =
        weight_data ? weight_data[cur_label] : static_cast<T>(1);
    dx_data[i * n_classes + cur_label] = -dout_val * cur_weight;
    if (reduction == "mean") {
      dx_data[i * n_classes + cur_label] /= total_weight_val;
    }
  }
}

template <typename T>
static void nll_loss_grad_2D(T* dx_data,
                             const T* dout_data,
                             const int64_t* label_data,
                             const T* weight_data,
                             const T* total_weight_data,
                             const int64_t batch_size,
                             const int64_t n_classes,
                             const int64_t in_dim2,
                             const int64_t in_dim3,
                             const std::string& reduction,
                             const int64_t ignore_index) {
  const auto map_size = in_dim2 * in_dim3;
  const auto sample_size = n_classes * map_size;

  if (reduction == "none") {
    for (int i = 0; i < batch_size; i++) {
      for (int h = 0; h < in_dim2; h++) {
        for (int w = 0; w < in_dim3; w++) {
          const auto index = i * map_size + h * in_dim3 + w;
          const auto cur_label = label_data[index];
          if (cur_label == ignore_index) {
            continue;
          }
          const auto cur_weight =
              weight_data ? weight_data[cur_label] : static_cast<T>(1);
          dx_data[i * sample_size + cur_label * map_size + h * in_dim3 + w] =
              -cur_weight * dout_data[index];
        }
      }
    }
    return;
  }

  const T dout_val = *dout_data;
  const T total_weight_val = *total_weight_data;
  for (int i = 0; i < batch_size; i++) {
    for (int h = 0; h < in_dim2; h++) {
      for (int w = 0; w < in_dim3; w++) {
        const auto index = i * map_size + h * in_dim3 + w;
        const auto cur_label = label_data[index];
        if (cur_label == ignore_index) {
          continue;
        }
        const auto cur_weight =
            weight_data ? weight_data[cur_label] : static_cast<T>(1);
        const auto dx_index =
            i * sample_size + cur_label * map_size + h * in_dim3 + w;
        dx_data[dx_index] = -dout_val * cur_weight;
        if (reduction == "mean") {
          dx_data[dx_index] /= total_weight_val;
        }
      }
    }
  }
}

template <typename T, typename Context>
void NllLossGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& labels,
                       const DenseTensor& total_weight,
                       paddle::optional<const DenseTensor&> weight,
                       const DenseTensor& d_out,
                       int64_t ignore_index,
                       const std::string& reduction,
                       DenseTensor* dx) {
  auto dx_data = dev_ctx.template Alloc<T>(dx);
  auto dout_data = d_out.data<T>();
  auto label_data = labels.data<int64_t>();
  auto weight_data = weight.get_ptr() ? weight.get_ptr()->data<T>() : nullptr;
  auto total_weight_data = total_weight.data<T>();
  memset(dx_data, 0, dx->numel() * sizeof(T));

  const auto x_dims = x.dims();
  const auto batch_size = x_dims[0];
  const auto n_classes = x_dims[1];

  if (x_dims.size() == 2) {
    nll_loss_grad_1D(dx_data,
                     dout_data,
                     label_data,
                     weight_data,
                     total_weight_data,
                     batch_size,
                     n_classes,
                     reduction,
                     ignore_index);
  } else if (x_dims.size() == 4) {
    const auto in_dim2 = x_dims[2];
    const auto in_dim3 = x_dims[3];
    nll_loss_grad_2D(dx_data,
                     dout_data,
                     label_data,
                     weight_data,
                     total_weight_data,
                     batch_size,
                     n_classes,
                     in_dim2,
                     in_dim3,
                     reduction,
                     ignore_index);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
    nll_loss_grad, CPU, ALL_LAYOUT, phi::NllLossGradKernel, float, double) {}