layer.py 9.6 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73 74
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
Q
qiaolongfei 已提交
75

Q
qiaolongfei 已提交
76
import activation
Q
qiaolongfei 已提交
77
import data_type
Q
qiaolongfei 已提交
78

Q
qiaolongfei 已提交
79 80 81 82 83
__all__ = [
    'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
    'cross_entropy_cost'
]

Q
qiaolongfei 已提交
84

Q
qiaolongfei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
100
class Layer(object):
Q
qiaolongfei 已提交
101
    def __init__(self, name, parent_layers, step_input=None):
Q
qiaolongfei 已提交
102
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
103 104
        assert isinstance(name, basestring)
        self.name = name
Q
qiaolongfei 已提交
105
        self.step_input = step_input
Q
qiaolongfei 已提交
106
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
107 108 109 110 111 112

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
113 114
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
115
                              collections.Sequence):
Q
qiaolongfei 已提交
116
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
117 118
                    context=context)
            else:
Q
qiaolongfei 已提交
119 120
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
Q
qiaolongfei 已提交
121 122
                if layer_name == "input" and self.step_input is not None:
                    v1_layer.insert(0, self.step_input)
Q
qiaolongfei 已提交
123
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
124

Q
qiaolongfei 已提交
125 126 127 128
        # memory may have the same name with some layer
        if isinstance(self, MemoryV2):
            return self.to_proto_impl(**kwargs)

Q
qiaolongfei 已提交
129 130 131 132 133 134 135 136
        if self.name not in context:
            context[self.name] = self.to_proto_impl(**kwargs)
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


Q
qiaolongfei 已提交
137
def __convert_to_v2__(method_name, name_prefix, parent_names):
Q
qiaolongfei 已提交
138 139 140 141 142
    if name_prefix is not None:
        wrapper = wrap_name_default(name_prefix=name_prefix)
    else:
        wrapper = None

Q
qiaolongfei 已提交
143
    class V2LayerImpl(Layer):
Q
qiaolongfei 已提交
144
        def __init__(self, name=None, step_input=None, **kwargs):
Q
qiaolongfei 已提交
145 146 147 148 149 150 151 152 153
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
                parent_layers[pname] = kwargs[pname]

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

Q
qiaolongfei 已提交
154
            super(V2LayerImpl, self).__init__(name, parent_layers, step_input)
Q
qiaolongfei 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
            return getattr(conf_helps, method_name)(name=self.name, **args)

Q
qiaolongfei 已提交
168
    return V2LayerImpl
Q
qiaolongfei 已提交
169 170


Q
qiaolongfei 已提交
171 172 173 174 175 176 177
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
178
    def __init__(self, name, type, **kwargs):
179
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
180

Q
qiaolongfei 已提交
181
        self.type = type
Q
qiaolongfei 已提交
182 183
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
184 185 186 187 188

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
189
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
190 191
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
192 193
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
194 195 196
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Q
qiaolongfei 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class MemoryV2(Layer):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
        self.__kwargs__ = kwargs
        super(MemoryV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
        return conf_helps.memory(name=self.name, size=self.size, **args)


Q
qiaolongfei 已提交
213
data = DataLayerV2
Q
qiaolongfei 已提交
214 215 216 217
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
    'maxid_layer', name_prefix='maxid_layer', parent_names=['input'])
classification_cost = __convert_to_v2__(
Q
qiaolongfei 已提交
218 219 220
    'classification_cost',
    name_prefix='classification_cost',
    parent_names=['input', 'label'])
Q
qiaolongfei 已提交
221 222 223 224
cross_entropy_cost = __convert_to_v2__(
    'cross_entropy',
    name_prefix='cross_entropy',
    parent_names=['input', 'label'])
Q
qiaolongfei 已提交
225 226 227 228 229 230 231
embedding = __convert_to_v2__(
    'embedding_layer', name_prefix='embedding', parent_names=['input'])
last_seq = __convert_to_v2__(
    'last_seq', name_prefix='last_seq', parent_names=['input'])
recurrent_group = __convert_to_v2__(
    'recurrent_group', name_prefix='recurrent_layer', parent_names=['input'])
memory = MemoryV2
Q
qiaolongfei 已提交
232 233

if __name__ == '__main__':
234 235
    pixel = data(name='pixel', type=data_type.dense_vector(784))
    label = data(name='label', type=data_type.integer_value(10))
Q
qiaolongfei 已提交
236 237 238 239 240 241
    hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
    inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
    maxid = max_id(input=inference)
    cost1 = classification_cost(input=inference, label=label)
    cost2 = cross_entropy_cost(input=inference, label=label)

Q
qiaolongfei 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    mem = memory(name="rnn_state", size=10)

    # print parse_network(cost1)
    # print parse_network(cost2)
    # print parse_network(cost1, cost2)
    # print parse_network(cost2)
    # print parse_network(inference, maxid)

    dict_dim = 10
    word_dim = 8
    hidden_dim = 8
    label_dim = 3

    def step(y):
        mem = conf_helps.memory(name="rnn_state", size=hidden_dim)
        out = conf_helps.fc_layer(
            input=[y, mem],
            size=hidden_dim,
            act=activation.Tanh(),
            bias_attr=True,
            name="rnn_state")
        return out

    def test():
        data1 = conf_helps.data_layer(name="word", size=dict_dim)
        embd = conf_helps.embedding_layer(input=data1, size=word_dim)
        conf_helps.recurrent_group(name="rnn", step=step, input=embd)

    # print __parse__(test)

    # yyyyyyyy
    def new_step(y):
        mem = memory(name="rnn_state", size=hidden_dim)
        out = fc(input=[mem],
                 step_input=y,
                 size=hidden_dim,
                 act=activation.Tanh(),
                 bias_attr=True,
                 name="rnn_state")
        return out.to_proto(dict())

    data1 = data(name="word", type=data_type.integer_value(dict_dim))
    embd = embedding(input=data1, size=word_dim)
    aaa = recurrent_group(name="rnn", step=new_step, input=embd)
    print parse_network(aaa)