run_program_op_func.h 5.2 KB
Newer Older
0
0x45f 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <vector>

#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/eager_tensor.h"
#include "paddle/fluid/eager/to_static/run_program_op_node.h"
#include "paddle/fluid/eager/utils.h"

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
// Filter params without grads in global block. In this case, we will
// tag its AutogradMeta with stop_gradient = True to avoid fault from
// reducer while training on multi-cards.
static void clear_no_grad_edges(
    const std::vector<paddle::experimental::Tensor>& params,
    const paddle::framework::BlockDesc* block_desc,
    egr::GradNodeBase* grad_node,
    size_t slot_id) {
  for (size_t i = 0; i < params.size(); ++i) {
    auto p_grad_name = paddle::framework::GradVarName(params[i].name());
    if (!block_desc->HasVar(p_grad_name)) {
      VLOG(1) << "clear edge of " << p_grad_name;
      grad_node->MutableOutputMeta()[slot_id][i].GetMutableEdge().Clear();
    }
  }
}

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
static void clear_no_grad_edges_with_partial_block(
    const std::vector<paddle::experimental::Tensor>& params,
    const paddle::framework::BlockDesc* forward_block_desc,
    const paddle::framework::BlockDesc* backward_block_desc,
    egr::GradNodeBase* grad_node,
    size_t slot_id) {
  for (size_t i = 0; i < params.size(); ++i) {
    auto p_grad_name = paddle::framework::GradVarName(params[i].name());
    if (!forward_block_desc->HasVar(p_grad_name) &&
        !backward_block_desc->HasVar(p_grad_name)) {
      VLOG(1) << "clear edge of " << p_grad_name;
      grad_node->MutableOutputMeta()[slot_id][i].GetMutableEdge().Clear();
    }
  }
}

J
Jiabin Yang 已提交
57
inline void run_program_ad_func(
0
0x45f 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    const std::vector<paddle::experimental::Tensor>& x,
    const std::vector<paddle::experimental::Tensor>& params,
    std::vector<paddle::experimental::Tensor*>& out,     // NOLINT
    std::vector<paddle::framework::Scope*>& step_scope,  // NOLINT
    std::vector<paddle::experimental::Tensor*>& dout,    // NOLINT
    const paddle::framework::AttributeMap& attrs) {
  VLOG(2) << "start run run_program";
  // Call forward function
  RunProgramAPI(x, params, out, step_scope, dout, attrs);
  VLOG(2) << "start run run_program grad";

  // Prepare Autograd Meta
  auto deref_out = details::DereferenceTensors(out);
  std::vector<egr::AutogradMeta*> p_autograd_x =
      egr::EagerUtils::nullable_autograd_meta(x);
  std::vector<egr::AutogradMeta*> p_autograd_params =
      egr::EagerUtils::nullable_autograd_meta(params);
  std::vector<egr::AutogradMeta*> p_autograd_outs =
      egr::EagerUtils::nullable_autograd_meta(deref_out);

  bool trace_backward = egr::Controller::Instance().HasGrad();
  bool require_any_grad = egr::EagerUtils::ComputeRequireGrad(
      trace_backward, &p_autograd_x, &p_autograd_params);

  if (require_any_grad) {
    std::vector<std::string> out_names;
    for (auto& t : deref_out) {
      out_names.emplace_back(t.name());
    }

    egr::EagerUtils::PassStopGradient(false, &p_autograd_outs);
    // Create GradOpNode (1 means [out_grad], 2 means [x_grad, paramx_grad])
    auto grad_node = std::make_shared<GradNodeRunProgram>(1, 2);

    grad_node->SetFwdOutNames(out_names);
    // Set Attributes
    grad_node->SetAttrMap(attrs);
    // Set TensorWrappers
    grad_node->SetFwdX(x);
97

0
0x45f 已提交
98 99 100 101
    grad_node->SetFwdParams(params);
    grad_node->SetStepScope(step_scope);

    // Set Grad out rank as same as fwd input and set stop gradient to bwd
102 103
    grad_node->SetGradOutMeta(x, /*slot id*/ 0);
    grad_node->SetGradOutMeta(params, /*slot id*/ 1);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

    bool use_interpretorcore =
        PADDLE_GET_CONST(bool, attrs.at("use_interpretorcore"));
    VLOG(2) << "clear_no_grad_edges.";
    if (use_interpretorcore) {
      auto* forward_global_block = PADDLE_GET_CONST(
          paddle::framework::BlockDesc*, attrs.at("forward_global_block"));
      auto* backward_global_block = PADDLE_GET_CONST(
          paddle::framework::BlockDesc*, attrs.at("backward_global_block"));
      clear_no_grad_edges_with_partial_block(params,
                                             forward_global_block,
                                             backward_global_block,
                                             grad_node.get(),
                                             /*slot id*/ 1);

    } else {
      auto* global_block = PADDLE_GET_CONST(paddle::framework::BlockDesc*,
                                            attrs.at("global_block"));
      clear_no_grad_edges(params, global_block, grad_node.get(), /*slot id*/ 1);
    }
0
0x45f 已提交
124

125
    grad_node->SetGradInMeta(deref_out, 0);
0
0x45f 已提交
126 127 128 129 130 131 132 133

    egr::EagerUtils::SetOutRankWithSlot(&p_autograd_outs, 0);

    // Set History for output set current Grad Node for
    egr::EagerUtils::SetHistory(&p_autograd_outs, grad_node);
    egr::EagerUtils::CheckAndRetainGrad(deref_out);
  }
}