sequence_pool_op.cc 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pool_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21

namespace paddle {
namespace operators {

22
class SequencePoolOp : public framework::OperatorWithKernel {
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
27 28
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequencePool");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequencePool");
29 30 31

    if (!ctx->IsRuntime()) {
      // Check the lod_level for compile-time.
32
      auto in_lod_level = ctx->GetLoDLevel("X");
33 34 35 36 37
      PADDLE_ENFORCE_GT(in_lod_level, 0, platform::errors::InvalidArgument(
                                             "The LoD level of Input(X) should "
                                             "be larger than 0, but received: "
                                             "lod level %u.",
                                             in_lod_level));
38
      ctx->SetLoDLevel("Out", in_lod_level - 1);
39 40
    }

Q
Qiao Longfei 已提交
41
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
42
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
43 44
      OP_INOUT_CHECK(ctx->HasOutput("MaxIndex"), "Output", "MaxIndex",
                     "SequencePool");
45 46
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
47 48 49
  }
};

50
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
51
 public:
Y
Yu Yang 已提交
52
  void Make() override {
53
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
54
    AddOutput("Out",
55
              "(Tensor) The output of SequencePoolOp does not contain LoD "
T
tianshuo78520a 已提交
56
              "information.");
57
    AddOutput("MaxIndex",
D
dangqingqing 已提交
58 59
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
60
        .AsIntermediate();
61 62 63 64
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
D
dzhwinter 已提交
65 66
    AddAttr<std::string>(
        "pooltype",
L
Luo Tao 已提交
67
        "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
68 69
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
70 71 72
    AddAttr<float>("pad_value",
                   "(float, default 0.0) The value to pad for empty sequence.")
        .SetDefault(0.0);
73
    AddComment(R"DOC(
74
Sequence Pool Operator.
75

76 77
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
78 79 80
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
2. SUM:     $$Out[i] = \sum_jX_{ij}$$
3. SQRT:    $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
81 82
4. LAST:    Out[i] = last instance in i-th sequence X[i]
5. FIRST:   Out[i] = first instance in i-th sequence X[i]
83
6. MAX:     $$Out[i] = max(X_i)$$
84

85 86
and for the empty sequence Out[i] = attr(pad_value).

87 88 89
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
90

91 92 93
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
L
Luo Tao 已提交
94

T
tianshuo78520a 已提交
95
Thus, Out is a [3,1,1] Tensor without LoD information.
96
And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
97

98 99 100
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
101
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
102 103 104 105
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

106 107 108 109
    )DOC");
  }
};

110
class SequencePoolGradOp : public framework::OperatorWithKernel {
111 112 113
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

114
  void InferShape(framework::InferShapeContext* ctx) const override {
115 116 117 118
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "SequencePoolGrad");
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequencePoolGrad");

Q
Qiao Longfei 已提交
119 120
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
121
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
122 123 124 125
                      platform::errors::InvalidArgument(
                          "The rank of output grad must equal to Input(X). But "
                          "received: input rank %u, input shape [%s].",
                          og_dims.size(), og_dims));
126
    for (int64_t i = 1; i < og_dims.size(); ++i) {
127 128 129 130 131 132 133 134
      PADDLE_ENFORCE_EQ(
          og_dims[i], x_dims[i],
          platform::errors::InvalidArgument(
              "The dimension mismatch between Input(OUT@GRAD) and "
              "Input(X). Received Input(OUT@GRAD): input rank %u, "
              "input shape [%s]; received Input(X): input rank %u, "
              "input shape [%s].",
              og_dims.size(), og_dims, x_dims.size(), x_dims));
135
    }
136 137 138

    ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
139
  }
140 141

 protected:
142
  framework::OpKernelType GetExpectedKernelType(
143
      const framework::ExecutionContext& ctx) const override {
144 145 146
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
147
  }
148 149
};

H
hong 已提交
150 151
template <typename T>
class SequencePoolGradOpMaker : public framework::SingleGradOpMaker<T> {
152
 public:
H
hong 已提交
153
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
154 155

 protected:
156
  void Apply(GradOpPtr<T> op_desc_ptr) const override {
157
    op_desc_ptr->SetType("sequence_pool_grad");
H
hong 已提交
158
    op_desc_ptr->SetInput("X", this->Input("X"));
159
    if (BOOST_GET_CONST(std::string, this->GetAttr("pooltype")) == "MAX") {
H
hong 已提交
160
      op_desc_ptr->SetInput("MaxIndex", this->Output("MaxIndex"));
161
    }
H
hong 已提交
162 163 164 165
    op_desc_ptr->SetInput(framework::GradVarName("Out"),
                          this->OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op_desc_ptr->SetAttrMap(this->Attrs());
166 167 168
  }
};

169
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SequencePoolGradOpNoNeedBufferVarsInferer,
170
                                    "X");
171

172 173 174 175
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
176
REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
H
hong 已提交
177 178
                  ops::SequencePoolGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequencePoolGradOpMaker<paddle::imperative::OpBase>);
179
REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp,
180
                  ops::SequencePoolGradOpNoNeedBufferVarsInferer);
181
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
182
    sequence_pool,
183 184 185
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, double>);

186
REGISTER_OP_CPU_KERNEL(
187
    sequence_pool_grad,
188 189
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, double>);