gaussian_random_op.cu 3.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14 15
#include <thrust/random.h>
#include <thrust/transform.h>
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
18
#include "paddle/fluid/operators/fill_constant_op.h"
Q
qijun 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
Q
qijun 已提交
34
    thrust::normal_distribution<T> dist(mean_, std_);
Q
qijun 已提交
35 36 37 38 39 40
    rng.discard(n);
    return dist(rng);
  }
};

template <typename T>
Y
Yu Yang 已提交
41
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
42 43 44
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Pass CI  
Yu Yang 已提交
45
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
46 47 48 49
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
    }
Y
Yu Yang 已提交
50 51
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Q
qijun 已提交
52
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
53 54 55 56 57
    const std::string op_type = "gaussian_random";
    auto shape = GetShape(context, op_type);
    tensor->Resize(shape);
    T* data = tensor->mutable_data<T>(context.GetPlace());

58 59
    int64_t size = tensor->numel();
    thrust::transform(index_sequence_begin, index_sequence_begin + size,
Q
qijun 已提交
60 61 62 63 64
                      thrust::device_ptr<T>(data),
                      GaussianGenerator<T>(mean, std, seed));
  }
};

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    thrust::counting_iterator<unsigned int> index_sequence_begin(0);
    int64_t size = tensor->numel();
    thrust::transform(index_sequence_begin, index_sequence_begin + size,
                      thrust::device_ptr<T>(data),
                      GaussianGenerator<T>(mean, std, seed));
  }
};
Q
qijun 已提交
85 86
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
87

Q
QI JUN 已提交
88
REGISTER_OP_CUDA_KERNEL(gaussian_random,
89 90
                        paddle::operators::GPUGaussianRandomKernel<float>,
                        paddle::operators::GPUGaussianRandomKernel<double>);
91 92 93 94
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);