engine.h 28.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18

19
#include <cstdint>
20
#include <map>
Y
Yan Chunwei 已提交
21
#include <memory>
22
#include <mutex>  // NOLINT
23
#include <string>
Y
Yan Chunwei 已提交
24
#include <unordered_map>
25
#include <unordered_set>
26
#include <utility>
27
#include <vector>
28 29
#include "NvInferRuntimeCommon.h"
#include "paddle/fluid/framework/lod_tensor.h"
30
#include "paddle/fluid/framework/scope.h"
N
nhzlx 已提交
31
#include "paddle/fluid/framework/tensor.h"
32
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
33
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
34 35
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
36
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
38
#include "paddle/fluid/inference/utils/singleton.h"
39
#include "paddle/fluid/platform/enforce.h"
40
#include "paddle/phi/common/data_type.h"
41 42
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/stream.h"
43
#include "paddle/utils/any.h"
Y
Yan Chunwei 已提交
44 45 46 47 48

namespace paddle {
namespace inference {
namespace tensorrt {

W
wanghuancoder 已提交
49 50 51 52
namespace plugin {
class PluginTensorRT;
}  // namespace plugin

53 54 55 56 57 58 59 60 61 62 63
using FluidDT = framework::proto::VarType_Type;
using TRT_DT = nvinfer1::DataType;

namespace {  // NOLINT

TRT_DT FluidDataType2TRT(FluidDT type) {
  switch (type) {
    case FluidDT::VarType_Type_FP32:
      return TRT_DT::kFLOAT;
    case FluidDT::VarType_Type_INT32:
      return TRT_DT::kINT32;
W
wenbin 已提交
64 65
    case FluidDT::VarType_Type_FP16:
      return TRT_DT::kHALF;
66 67 68 69 70 71 72 73 74 75
    default:
      return TRT_DT::kINT32;
  }
  PADDLE_THROW(platform::errors::InvalidArgument(
      "unknown fluid datatype in TRT op converter"));
  return TRT_DT::kINT32;
}

// The T can be int32 or int64 type.
template <typename T>
76 77
nvinfer1::Dims Vec2TRT_Dims(const std::vector<T>& shape,
                            std::string input,
78
                            bool with_dynamic_shape = false) {
79 80
  PADDLE_ENFORCE_GT(shape.size(),
                    0UL,
81
                    platform::errors::InvalidArgument(
82
                        "TensorRT's tensor input requires at least 1 "
83
                        "dimensions, but input %s has %d dims.",
84 85
                        input,
                        shape.size()));
W
wenbin 已提交
86

87 88 89 90 91 92 93 94 95 96 97 98 99
  auto ShapeStr = [](const std::vector<T>& shape) {
    std::ostringstream os;
    os << "[";
    for (size_t i = 0; i < shape.size(); ++i) {
      if (i == shape.size() - 1) {
        os << shape[i];
      } else {
        os << shape[i] << ",";
      }
    }
    os << "]";
    return os.str();
  };
100 101
  if (!with_dynamic_shape) {
    if (shape.size() == 4UL) {
102 103 104 105
      if (shape[2] == -1 || shape[3] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
106 107
            input,
            ShapeStr(shape)));
108
      }
109
      return nvinfer1::Dims3(shape[1], shape[2], shape[3]);
W
wenbin 已提交
110 111 112 113 114
    } else if (shape.size() == 5UL) {
      if (shape[2] == -1 || shape[3] == -1 || shape[4] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
115 116
            input,
            ShapeStr(shape)));
W
wenbin 已提交
117 118
      }
      return nvinfer1::Dims4(shape[1], shape[2], shape[3], shape[4]);
119
    } else if (shape.size() == 3UL) {
120 121 122 123
      if (shape[1] == -1 || shape[2] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
124 125
            input,
            ShapeStr(shape)));
126
      }
127
      return nvinfer1::Dims2(shape[1], shape[2]);
128 129 130 131 132
    } else if (shape.size() == 2UL) {
      if (shape[1] == -1) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "The input [%s] shape of trt subgraph is %s, please enable "
            "trt dynamic_shape mode by SetTRTDynamicShapeInfo.",
133 134
            input,
            ShapeStr(shape)));
135 136 137 138 139
      }
      nvinfer1::Dims dims;
      dims.nbDims = 1;
      dims.d[0] = shape[1];
      return dims;
140
    }
141
    // static shape doesn't support 1D op so far.
142 143
    PADDLE_ENFORCE_NE(shape.size(),
                      1UL,
144 145 146
                      platform::errors::InvalidArgument(
                          "The input [%s] shape of trt subgraph is %s."
                          "it's not supported by trt so far",
147 148
                          input,
                          ShapeStr(shape)));
149 150 151 152 153 154 155

    nvinfer1::Dims dims;
    dims.nbDims = shape.size() - 1;
    for (size_t i = 1; i < shape.size(); i++) {
      dims.d[i - 1] = shape[i];
    }
    return dims;
156 157
  } else {
    if (shape.size() == 4UL) {
158
      return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
159 160 161
    } else if (shape.size() == 3UL) {
      return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
    }
162 163 164 165 166 167
    nvinfer1::Dims dims;
    dims.nbDims = shape.size();
    for (size_t i = 0; i < shape.size(); i++) {
      dims.d[i] = shape[i];
    }
    return dims;
168 169
  }
}
170
}  // namespace
171

N
nhzlx 已提交
172
class TRTInt8Calibrator;
W
wanghuancoder 已提交
173

Y
Yan Chunwei 已提交
174 175 176
/*
 * TensorRT Engine.
 *
177
 * There are two alternative ways to use it, one is to build from a paddle
178
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
179
 */
180 181
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;
182
  using ShapeMapType = std::map<std::string, std::vector<int>>;
183
  using PredictorID = int;
184

Y
Yan Chunwei 已提交
185 186 187 188
 public:
  // Weight is model parameter.
  class Weight {
   public:
189
    Weight() = default;
190
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
191 192 193 194
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
195
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
196

197 198 199 200 201 202 203 204
    void SetDataType(nvinfer1::DataType type) { w_.type = type; }

    void SetDataType(phi::DataType type);

    void SetValues(const void* values) { w_.values = values; }

    void SetCount(int64_t num) { w_.count = num; }

205 206
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
207 208 209 210
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
211
  TensorRTEngine(
212
      int max_batch,
213
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
214
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
215 216
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
217 218 219
      const ShapeMapType min_input_shape = {},
      const ShapeMapType max_input_shape = {},
      const ShapeMapType optim_input_shape = {},
220
      bool disable_trt_plugin_fp16 = false,
221
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
222
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
223 224
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
225
        precision_(precision),
N
nhzlx 已提交
226
        calibrator_(calibrator),
N
nhzlx 已提交
227
        device_id_(device_id),
228 229 230
        min_input_shape_(min_input_shape),
        max_input_shape_(max_input_shape),
        optim_input_shape_(optim_input_shape),
231
        disable_trt_plugin_fp16_(disable_trt_plugin_fp16),
232
        model_precision_(model_precision),
233 234 235 236
        logger_(logger) {
    if (min_input_shape_.size() != 0 && max_input_shape_.size() != 0 &&
        optim_input_shape_.size() != 0) {
      PADDLE_ENFORCE_EQ(
237 238
          min_input_shape_.size(),
          max_input_shape_.size(),
239 240 241
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of max_input_shape_",
242 243
              min_input_shape_.size(),
              max_input_shape_.size()));
244
      PADDLE_ENFORCE_EQ(
245 246
          min_input_shape_.size(),
          optim_input_shape_.size(),
247 248 249
          platform::errors::InvalidArgument(
              "The min_input_shape_'s size(%d) should be equal to the "
              "size(%d) of optim_input_shape_",
250 251
              min_input_shape_.size(),
              optim_input_shape_.size()));
252 253 254 255 256 257 258
#if IS_TRT_VERSION_GE(6000)
      with_dynamic_shape_ = true;
#else
      LOG(WARNING) << "Using dynamic shape of TRT need ensure that the TRT "
                      "version should be at least 6.";
#endif
    }
259
    dy::initLibNvInferPlugins(&logger, "");
260
  }
Y
Yan Chunwei 已提交
261

262 263 264 265 266 267 268 269 270
  ~TensorRTEngine() {
    for (auto& attr : attrs_) {
      if (attr_dels_.find(attr.first) != attr_dels_.end()) {
        attr_dels_[attr.first]();
      }
    }
    attrs_.clear();
    attr_dels_.clear();
  }
Y
Yan Chunwei 已提交
271

272
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
273 274 275 276 277
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
278 279
  void DeclareOutput(const nvinfer1::ILayer* layer,
                     int offset,
Y
Yan Chunwei 已提交
280
                     const std::string& name);
L
Luo Tao 已提交
281 282
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
283
  void ClearTensorMap() { itensor_map_.clear(); }
Y
Yan Chunwei 已提交
284

285
  void DeleteITensor(const std::string& name, nvinfer1::ITensor* tensor);
L
Luo Tao 已提交
286 287 288
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
289
  nvinfer1::ITensor* ConvertWeight2ITensor(const std::string& name);
290
  std::unordered_map<std::string, nvinfer1::ITensor*>* GetITensorMap();
Y
Yan Chunwei 已提交
291 292

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
293
  nvinfer1::IExecutionContext* context();
W
wenbin 已提交
294 295 296 297

  int GetProfileIndex() {
    if (max_profile_num_ > 1) {
      std::unique_lock<std::mutex> lock(mutex_);
298
      return profile_index_[predictor_id_per_thread];
W
wenbin 已提交
299 300 301 302 303 304 305 306 307 308 309
    } else {
      return 0;
    }
  }

  int GetBindingsOffset() {
    return (binding_num_ / max_profile_num_) * GetProfileIndex();
  }

  int GetNbBindings() { return binding_num_; }

310 311 312 313 314
  void ResetContext() {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "You should build engine first and then set the context."));
315 316 317
    std::unique_lock<std::mutex> lock(mutex_);
    infer_context_[predictor_id_per_thread].reset(nullptr);
    infer_context_.erase(predictor_id_per_thread);
318
  }
N
nhzlx 已提交
319 320

  nvinfer1::IHostMemory* Serialize() {
321 322 323 324
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        platform::errors::InvalidArgument(
            "The TensorRT engine must be built first before serialization"));
Z
zlsh80826 已提交
325
#if IS_TRT_VERSION_LT(8000)
N
nhzlx 已提交
326
    ihost_memory_.reset(infer_engine_->serialize());
Z
zlsh80826 已提交
327 328 329 330 331 332
#else
    PADDLE_ENFORCE_NOT_NULL(
        ihost_memory_,
        platform::errors::InvalidArgument(
            "TensorRT >= 8.0 requires that buildSerializedNetwork is called"));
#endif
N
nhzlx 已提交
333 334 335
    return ihost_memory_.get();
  }

336
  void Deserialize(const std::string& engine_serialized_data);
N
nhzlx 已提交
337

338 339
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
340 341 342 343 344 345 346

  bool WithFp16() {
    bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    return enable_fp16 && support_fp16;
  }

N
nhzlx 已提交
347
  int GetDeviceId() { return device_id_; }
348

349
  nvinfer1::IPluginV2Layer* AddPlugin(nvinfer1::ITensor* const* inputs,
350 351
                                      int num_inputs,
                                      plugin::PluginTensorRT*);
352 353 354 355 356

  nvinfer1::IPluginV2Layer* AddPluginV2Ext(nvinfer1::ITensor* const* inputs,
                                           int num_inputs,
                                           plugin::PluginTensorRTV2Ext* plugin);

357 358 359 360
  nvinfer1::IPluginV2Layer* AddPluginV2IOExt(nvinfer1::ITensor* const* inputs,
                                             int num_inputs,
                                             nvinfer1::IPluginV2IOExt* plugin);

361 362 363
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }
364

365 366
  // Get fp16 trt weight. If src weight is not fp16, we will cast.
  Weight GetFp16TrtWeight(const std::string& name,
367
                          const phi::DenseTensor& weight_tensor);
368

369 370
  // Get fp32 trt weight. If src weight is not fp32, we will cast.
  Weight GetFp32TrtWeight(const std::string& name,
371
                          const phi::DenseTensor& weight_tensor);
372 373 374

  // if the src weight type is fp16, then return fp16 trt weight, etc.
  Weight GetTrtWeight(const std::string& name,
375
                      const phi::DenseTensor& weight_tensor);
376

377 378 379 380 381 382 383 384
  float GetTensorDynamicRange(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_[tensor];
  }

  bool DynamicRangeIsSet(nvinfer1::ITensor* tensor) {
    return quant_dynamic_range_.count(tensor);
  }

N
nhzlx 已提交
385 386 387 388 389
  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
390
  std::unordered_map<std::string /*name*/, std::unique_ptr<phi::DenseTensor>>
N
nhzlx 已提交
391
      weight_map;
Y
Yan Chunwei 已提交
392

393 394 395
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
396
                  std::unique_ptr<phi::DenseTensor> w_tensor) {
397 398
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
399
    std::string splitter = "__";
400 401 402 403 404 405 406 407
    std::string name_with_suffix = w_name + splitter + suffix;
    PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix),
                      0,
                      platform::errors::AlreadyExists(
                          "The weight named %s is set into the weight map "
                          "twice in TRT OP converter.",
                          name_with_suffix));
    weight_map[name_with_suffix] = std::move(w_tensor);
408 409 410
    suffix_counter += 1;
  }

411
  void SetUseOSS(bool use_varseqlen) { use_varseqlen_ = use_varseqlen; }
412 413
  void SetUseDLA(bool use_dla) { use_dla_ = use_dla; }
  void SetDLACore(int dla_core) { dla_core_ = dla_core; }
414
  void SetWithErnie(bool with_ernie) { with_ernie_ = with_ernie; }
415 416 417
  void SetWithInterleaved(bool with_interleaved) {
    with_interleaved_ = with_interleaved;
  }
418 419 420 421 422 423
  void SetTransformerPosid(std::string tensorrt_transformer_posid) {
    tensorrt_transformer_posid_ = tensorrt_transformer_posid;
  }
  void SetTransformerMaskid(std::string tensorrt_transformer_maskid) {
    tensorrt_transformer_maskid_ = tensorrt_transformer_maskid;
  }
424 425 426 427 428 429
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

430 431 432 433 434 435 436
  // NOTE: The func bellow was modified to adapt the dynamic shape.
  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork();
  // After finishing adding ops, freeze this network and creates the execution
  // environment.
  void FreezeNetwork();
437 438
  void Execute(int batch_size,
               std::vector<void*>* buffers,
439 440
               cudaStream_t stream = nullptr);

441
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
442 443 444 445

  ShapeMapType min_input_shape() { return min_input_shape_; }
  ShapeMapType max_input_shape() { return max_input_shape_; }
  ShapeMapType optim_input_shape() { return optim_input_shape_; }
446 447 448 449 450 451 452 453 454

  bool AdjustDynamicShapeRange(const ShapeMapType& runtime_input_shape,
                               std::vector<std::string>* changed) {
    bool ret = false;
    changed->clear();
    for (const auto& it : runtime_input_shape) {
      auto name = it.first;
      auto input_shape = it.second;
      PADDLE_ENFORCE_EQ(
455 456
          min_input_shape_.count(name),
          true,
457 458
          platform::errors::InvalidArgument(
              "TRT dynamic_shape min_input_shape %s not found.", name));
459 460
      PADDLE_ENFORCE_EQ(min_input_shape_[name].size(),
                        input_shape.size(),
461 462 463 464
                        platform::errors::InvalidArgument(
                            "TRT dynamic_shape min_input_shape %s size not "
                            "equal, the min_input_shape[%s].size()=%d"
                            ", but the runtime_input_shape[%s].size()=%d.",
465 466 467 468
                            name,
                            name,
                            min_input_shape_[name].size(),
                            name,
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
                            input_shape.size()));
      auto bak_min_shape = min_input_shape_[name];
      auto bak_max_shape = max_input_shape_[name];
      bool min_change = false;
      bool max_change = false;
      for (size_t d = 0; d < input_shape.size(); ++d) {
        if (input_shape[d] < min_input_shape_[name][d]) {
          ret = true;
          min_change = true;
          min_input_shape_[name][d] = input_shape[d];
        }
        if (input_shape[d] > max_input_shape_[name][d]) {
          ret = true;
          max_change = true;
          max_input_shape_[name][d] = input_shape[d];
        }
      }

      if (min_change)
        LOG(INFO) << "refactor shape range: " << name << ", min_shape from "
                  << Vec2Str(bak_min_shape) << " to "
                  << Vec2Str(min_input_shape_[name]);
      if (max_change)
        LOG(INFO) << "refactor shape range: " << name << ", max_shape from "
                  << Vec2Str(bak_max_shape) << " to "
                  << Vec2Str(max_input_shape_[name]);
      if (min_change || max_change) changed->push_back(name);
    }
    return ret;
  }

500
  bool use_varseqlen() { return use_varseqlen_; }
501
  bool with_ernie() { return with_ernie_; }
502
  bool with_interleaved() { return with_interleaved_; }
503 504 505 506 507 508
  std::string tensorrt_transformer_posid() {
    return tensorrt_transformer_posid_;
  }
  std::string tensorrt_transformer_maskid() {
    return tensorrt_transformer_maskid_;
  }
509
  bool disable_trt_plugin_fp16() { return disable_trt_plugin_fp16_; }
510
  bool with_dynamic_shape() { return with_dynamic_shape_; }
511
  AnalysisConfig::Precision precision() { return precision_; }
512

513
#if IS_TRT_VERSION_GE(6000)
514
  nvinfer1::IPluginV2Layer* AddDynamicPlugin(
515 516
      nvinfer1::ITensor* const* inputs,
      int num_inputs,
517
      plugin::DynamicPluginTensorRT* plugin) {
518 519 520 521 522
    owned_pluginv2_.emplace_back(plugin);
    return network()->addPluginV2(inputs, num_inputs, *plugin);
  }
#endif

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
  bool Has(const std::string& attr_name) const {
    return attrs_.count(attr_name) > 0;
  }

  void Erase(const std::string& attr_name) {
    if (!Has(attr_name)) {
      return;
    }
    if (attr_dels_.find(attr_name) != attr_dels_.end()) {
      attr_dels_[attr_name]();
      attr_dels_.erase(attr_name);
    }
    attrs_.erase(attr_name);
  }

  // Set a pointer to the attribute. Engine takes ownership of the attribute.
  template <typename AttrType>
  void Set(const std::string& attr_name, AttrType* attr) {
    if (attrs_.count(attr_name) == 0) {
      PADDLE_ENFORCE_EQ(
543 544
          attrs_.count(attr_name),
          0,
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
          platform::errors::AlreadyExists(
              "Attribute %s already set in trt engine.", attr_name));
    } else {
      VLOG(3) << "Setting the attribute " << attr_name << " for trt engine "
              << this;
    }
    attrs_[attr_name] = attr;
    attr_dels_[attr_name] = [attr, attr_name]() {
      VLOG(3) << "deleting " << attr_name;
      delete attr;
    };
  }

  // Set a pointer to the attribute. Engine doesn't take ownership. Caller
  // should delete the attribute.
  template <typename AttrType>
  void SetNotOwned(const std::string& attr_name, AttrType* attr) {
    PADDLE_ENFORCE_EQ(
563 564
        attrs_.count(attr_name),
        0,
565 566 567 568 569 570 571 572
        platform::errors::AlreadyExists(
            "Attribute %s already set in trt engine.", attr_name));
    attrs_[attr_name] = attr;
  }

  // Get a reference to the attributed previously set.
  template <typename AttrType>
  AttrType& Get(const std::string& attr_name) const {
573 574
    PADDLE_ENFORCE_NE(attrs_.find(attr_name),
                      attrs_.end(),
575 576 577
                      platform::errors::InvalidArgument(
                          "Attribute %s not found in trt engine.", attr_name));
    try {
578 579
      return *paddle::any_cast<AttrType*>(attrs_.at(attr_name));
    } catch (paddle::bad_any_cast&) {
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
      auto TypeToString = [](const std::type_info& info) -> std::string {
        if (std::type_index(info) == std::type_index(typeid(bool*))) {
          return "bool";
        } else if (std::type_index(info) == std::type_index(typeid(int*))) {
          return "int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(const int*))) {
          return "const int";
        } else if (std::type_index(info) ==
                   std::type_index(typeid(std::string*))) {
          return "std::string";
        }
        return info.name();
      };

      PADDLE_THROW(platform::errors::InvalidArgument(
596 597
          "Invalid type for attritube %s, expected: %s, actual: %s.",
          attr_name,
598 599 600 601 602
          TypeToString(typeid(AttrType*)),
          TypeToString(attrs_.at(attr_name).type())));
    }
  }

W
wenbin 已提交
603
  void SetProfileNum(int num) { max_profile_num_ = num; }
604 605 606 607

  void GetEngineInfo();

  void SetUseInspector(bool use_inspector) { use_inspector_ = use_inspector; }
608
  void SetScope(const framework::Scope& scope) { scope_ = &scope; }
609

610 611 612 613
  void SetContextMemorySharing(bool context_memory_sharing) {
    context_memory_sharing_ = context_memory_sharing;
  }

Y
Yan Chunwei 已提交
614
 private:
N
nhzlx 已提交
615 616 617 618
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();
619 620
  // Used for convert weight into Itensor
  const framework::Scope* scope_;
N
nhzlx 已提交
621

Y
Yan Chunwei 已提交
622 623
  // the max batch size
  int max_batch_;
624 625
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
626
  // the max memory size the engine uses
627
  int64_t max_workspace_;
628

Z
Zhaolong Xing 已提交
629
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
630 631 632
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
633

634 635 636
  // use for engine context memory sharing
  bool context_memory_sharing_{false};

N
nhzlx 已提交
637
  int device_id_;
W
wenbin 已提交
638 639
  int max_profile_num_{1};
  int cur_profile_num_{0};
640
  std::unordered_map<PredictorID, int> profile_index_;
641 642 643
  ShapeMapType min_input_shape_;
  ShapeMapType max_input_shape_;
  ShapeMapType optim_input_shape_;
644
  bool disable_trt_plugin_fp16_{false};
645
  phi::DataType model_precision_{phi::DataType::FLOAT32};
646
  bool use_varseqlen_{false};
647 648
  bool use_dla_{false};
  int dla_core_{0};
649
  bool with_ernie_{false};
650
  bool with_interleaved_{false};
651 652
  std::string tensorrt_transformer_posid_;
  std::string tensorrt_transformer_maskid_;
Y
Yan Chunwei 已提交
653 654 655
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
L
Luo Tao 已提交
656 657
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
658

659
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
660
  std::vector<std::unique_ptr<plugin::PluginTensorRTV2Ext>> owned_plugin_v2ext_;
661
  std::vector<std::unique_ptr<nvinfer1::IPluginV2IOExt>> owned_plugin_v2ioext_;
Y
Yan Chunwei 已提交
662 663 664 665

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
666 667 668 669 670
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
671 672 673 674 675 676
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
677
  std::unordered_map<PredictorID, infer_ptr<nvinfer1::IExecutionContext>>
678
      infer_context_;
N
nhzlx 已提交
679
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
680
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
681

682
  std::unordered_map<std::string, paddle::any> attrs_;
683 684
  std::unordered_map<std::string, std::function<void(void)>> attr_dels_;

685 686 687
  // For dynamic shape
  bool with_dynamic_shape_{false};
#if IS_TRT_VERSION_GE(6000)
W
wenbin 已提交
688
  int binding_num_;
689
  infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
W
wenbin 已提交
690
  std::vector<nvinfer1::IOptimizationProfile*> optim_profiles_;
691
  std::vector<std::unique_ptr<plugin::DynamicPluginTensorRT>> owned_pluginv2_;
692
#endif
693
  std::mutex mutex_;
694
  bool use_inspector_;
695 696 697

 public:
  thread_local static int predictor_id_per_thread;
Y
Yan Chunwei 已提交
698 699
};  // class TensorRTEngine

700
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
701 702 703 704 705 706 707 708 709
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
710
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
Z
zhoutianzi666 已提交
711
  engine__->network()->add##layer__(__VA_ARGS__)
Y
Yan Chunwei 已提交
712

713
class TRTEngineManager {
714 715 716
  using PredictorID = int;
  using AllocationPtr = phi::Allocator::AllocationPtr;

717
 public:
718 719 720 721 722
  bool Empty() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return engines_.size() == 0;
  }

723
  bool Has(const std::string& name) const {
724
    std::lock_guard<std::mutex> lock(mutex_);
725 726 727 728 729
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
730
    std::lock_guard<std::mutex> lock(mutex_);
731 732 733
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
734
  TensorRTEngine* Create(
735 736
      std::string name,
      int max_batch,
737
      int64_t max_workspace,
Z
Zhaolong Xing 已提交
738
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
739 740
      TRTInt8Calibrator* calibrator = nullptr,
      int device_id = 0,
741 742 743
      const std::map<std::string, std::vector<int>> min_input_shape = {},
      const std::map<std::string, std::vector<int>> max_input_shape = {},
      const std::map<std::string, std::vector<int>> optim_input_shape = {},
744
      bool disable_trt_plugin_fp16 = false,
745
      phi::DataType model_precision = phi::DataType::FLOAT32,
Z
Zhaolong Xing 已提交
746
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
747 748 749 750 751 752 753 754 755
    auto* p = new TensorRTEngine(max_batch,
                                 max_workspace,
                                 precision,
                                 calibrator,
                                 device_id,
                                 min_input_shape,
                                 max_input_shape,
                                 optim_input_shape,
                                 disable_trt_plugin_fp16,
756
                                 model_precision,
757
                                 logger);
758
    std::lock_guard<std::mutex> lock(mutex_);
759 760 761 762 763
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
764
    std::lock_guard<std::mutex> lock(mutex_);
765 766 767
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
768
    engines_.clear();
769 770
  }

W
Wilber 已提交
771
  void DeleteKey(const std::string& key) {
772
    std::lock_guard<std::mutex> lock(mutex_);
W
Wilber 已提交
773 774 775 776 777 778 779
    auto iter = engines_.find(key);
    if (iter != engines_.end()) {
      iter->second.reset(nullptr);
      engines_.erase(iter);
    }
  }

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
  void updateContextMemorySize(size_t mem_size, PredictorID predictor_id) {
    bool size_updated{false};

    {
      std::lock_guard<std::mutex> lock(mutex_);
      if (max_ctx_mem_size_ < mem_size) {
        max_ctx_mem_size_ = mem_size;
        size_updated = true;
      }
    }

    if (size_updated) {
      releaseContextMemory(predictor_id);
    }
  }

  void* getContextMemory(PredictorID predictor_id,
                         const phi::GPUPlace& place,
                         const phi::Stream& stream) {
    std::lock_guard<std::mutex> lock(mutex_);
    static auto alignment = getAlignmentSize(place);
    if (context_memorys_.count(predictor_id) == 0) {
      auto context_memory =
          memory::Alloc(place, max_ctx_mem_size_ + alignment, stream);
      // context_memory_[predictor_id].reset(context_memory.release());
      context_memorys_[predictor_id] = std::move(context_memory);
    }
    return getAlignedMemory(context_memorys_[predictor_id]->ptr(), alignment);
  }

  void releaseContextMemory(PredictorID predictor_id) {
    std::lock_guard<std::mutex> lock(mutex_);
    if (context_memorys_.count(predictor_id)) {
      context_memorys_[predictor_id].reset(nullptr);
      context_memorys_.erase(predictor_id);
    }
  }

818
 private:
819 820 821 822 823 824 825 826 827 828 829 830
  size_t getAlignmentSize(const phi::GPUPlace& place) {
    const auto& prop = platform::GetDeviceProperties(place.GetDeviceId());
    return prop.textureAlignment;
  }

  void* getAlignedMemory(void* addr, size_t alignment) {
    return reinterpret_cast<void*>(uintptr_t(addr) & (~(alignment - 1)));
  }

  mutable std::mutex mutex_;
  size_t max_ctx_mem_size_{0};
  std::unordered_map<PredictorID, AllocationPtr> context_memorys_;
831 832 833
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
834 835 836
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle