test_fill_api.cc 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>

18
#include "paddle/pten/api/include/creation.h"
19

20
#include "paddle/pten/api/lib/utils/allocator.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/core/kernel_registry.h"

namespace framework = paddle::framework;
using DDim = paddle::framework::DDim;

// TODO(chenweihang): Remove this test after the API is used in the dygraph
TEST(API, full_like) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 2}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();
  dense_x_data[0] = 0;

  float val = 1.0;

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
  auto out = paddle::experimental::full_like(x, val, pten::DataType::FLOAT32);

  // 3. check result
48 49
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<float>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_NEAR(actual_result[i], val, 1e-6f);
  }
}

TEST(API, zeros_like) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::FLOAT32,
                            framework::make_ddim({3, 2}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<float>();
  dense_x_data[0] = 1;

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
78
  auto out = paddle::experimental::zeros_like(x, pten::DataType::INT32);
79 80

  // 3. check result
81 82
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
83 84
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
85
  ASSERT_EQ(out.type(), pten::DataType::INT32);
86 87 88 89
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
90
  auto* actual_result = dense_out->data<int32_t>();
91
  for (auto i = 0; i < 6; i++) {
92
    ASSERT_EQ(actual_result[i], 0);
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
  }
}

TEST(API, ones_like) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
  auto dense_x = std::make_shared<pten::DenseTensor>(
      alloc,
      pten::DenseTensorMeta(pten::DataType::INT32,
                            framework::make_ddim({3, 2}),
                            pten::DataLayout::NCHW));
  auto* dense_x_data = dense_x->mutable_data<int32_t>();
  dense_x_data[0] = 0;

  paddle::experimental::Tensor x(dense_x);

  // 2. test API
  auto out = paddle::experimental::ones_like(x, pten::DataType::INT32);

  // 3. check result
114 115
  ASSERT_EQ(out.dims().size(), 2);
  ASSERT_EQ(out.dims()[0], 3);
116 117 118 119 120 121 122 123 124 125 126 127
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::INT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<int32_t>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_EQ(actual_result[i], 1);
  }
}
128 129 130 131 132 133 134 135 136 137 138 139

TEST(API, full) {
  // 1. create tensor
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  float val = 1.0;

  // 2. test API
  auto out = paddle::experimental::full({3, 2}, val, pten::DataType::FLOAT32);

  // 3. check result
140
  ASSERT_EQ(out.shape().size(), 2UL);
141 142 143 144 145 146 147 148 149 150 151 152 153
  ASSERT_EQ(out.shape()[0], 3);
  ASSERT_EQ(out.numel(), 6);
  ASSERT_EQ(out.is_cpu(), true);
  ASSERT_EQ(out.type(), pten::DataType::FLOAT32);
  ASSERT_EQ(out.layout(), pten::DataLayout::NCHW);
  ASSERT_EQ(out.initialized(), true);

  auto dense_out = std::dynamic_pointer_cast<pten::DenseTensor>(out.impl());
  auto* actual_result = dense_out->data<float>();
  for (auto i = 0; i < 6; i++) {
    ASSERT_NEAR(actual_result[i], val, 1e-6f);
  }
}