softplus_mkldnn_op.h 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#pragma once
16 17 18 19 20 21 22 23 24 25 26
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename T>
class SoftplusMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
 public:
27 28 29 30
  SoftplusMKLDNNHandler(const framework::ExecutionContext& ctx,
                        const Tensor* x,
                        const float beta,
                        const dnnl::engine engine)
31 32
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine,
                                                           ctx.GetPlace()) {
33
    auto x_tz = phi::vectorize(x->dims());
34 35

    auto beta_tz = std::vector<int64_t>(x_tz.size(), 1);
36
    auto beta_md =
37 38
        dnnl::memory::desc(beta_tz,
                           platform::MKLDNNGetDataType<T>(),
39
                           platform::GetPlainMKLDNNFormat(x_tz.size()));
40 41

    dnnl::post_ops post_ops;
42 43
    post_ops.append_eltwise(
        1.0f, dnnl::algorithm::eltwise_soft_relu, 0.0f, 0.0f);
44
    if (beta != 1.0f) {
45 46
      post_ops.append_eltwise(
          1.0f, dnnl::algorithm::eltwise_linear, 1.0f / beta, 0.0f);
47 48
    }

49
    AppendFusedActivationIfExists(ctx, &post_ops);
50

51 52 53
    dnnl::primitive_attr attrs;
    attrs.set_post_ops(post_ops);

54 55 56 57
    this->AcquireForwardPrimitiveDescriptor(attrs,
                                            dnnl::algorithm::binary_mul,
                                            x->mem_desc(),
                                            beta_md,
58
                                            x->mem_desc());
59 60
  }

61
  std::shared_ptr<dnnl::memory> AcquireBetaMemory(const float* beta) {
62 63 64
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->src1_desc(), platform::to_void_cast<float>(beta));
  }
65 66 67

 private:
  void AppendFusedActivationIfExists(const framework::ExecutionContext& ctx,
68
                                     dnnl::post_ops* post_ops) {
69 70 71 72 73 74
    const auto& fused_activation_type =
        algo_map.find(ctx.Attr<std::string>("fuse_activation_type"));

    if (fused_activation_type != algo_map.end()) {
      auto scale_out =
          ctx.Attr<float>("fuse_activation_scale");  // for future int8 support
75 76
      post_ops->append_eltwise(scale_out,
                               fused_activation_type->second,
77 78
                               ctx.Attr<float>("fuse_activation_alpha"),
                               ctx.Attr<float>("fuse_activation_beta"));
79 80 81 82
    }
  }

  static const std::unordered_map<std::string, dnnl::algorithm> algo_map;
83 84
};

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
template <typename T>
const std::unordered_map<std::string, dnnl::algorithm>
    SoftplusMKLDNNHandler<T>::algo_map = {
        {"relu", dnnl::algorithm::eltwise_relu},
        {"tanh", dnnl::algorithm::eltwise_tanh},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"hardswish", dnnl::algorithm::eltwise_hardswish},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic}};

101 102 103 104 105 106 107 108 109 110 111 112 113
template <typename T>
void custom_softplus_eltwise_forward(const framework::ExecutionContext& ctx) {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& mkldnn_engine = dev_ctx.GetEngine();

  const auto* x = ctx.Input<Tensor>("X");
  auto* out = ctx.Output<Tensor>("Out");

  bool is_inplaced = x->IsSharedBufferWith(*out);

  const float beta = ctx.Attr<float>("beta");

114
  SoftplusMKLDNNHandler<T> handler(ctx, x, beta, mkldnn_engine);
115 116 117 118

  auto src_memory_p = handler.AcquireSrcMemory(x);

  auto beta_memory_p = handler.AcquireBetaMemory(&beta);
119 120 121 122 123 124 125
  std::shared_ptr<dnnl::memory> dst_memory_p = nullptr;
  if (is_inplaced) {
    dst_memory_p = src_memory_p;
    out->mutable_data<T>(ctx.GetPlace());
  } else {
    dst_memory_p = handler.AcquireDstMemory(out);
  }
126 127 128 129 130 131 132 133 134 135 136 137
  auto binary_p = handler.AcquireForwardPrimitive();

  auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

  const std::unordered_map<int, dnnl::memory> args = {
      {DNNL_ARG_SRC_0, *src_memory_p},
      {DNNL_ARG_SRC_1, *beta_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  binary_p->execute(astream, args);
  astream.wait();

138
  out->set_mem_desc(dst_memory_p->get_desc());
139 140 141
}
}  // namespace operators
}  // namespace paddle