MKLDNNTester.cpp 12.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
T
tensor-tang 已提交
18 19 20 21

namespace paddle {

// init data layer and test layer of both dnn and reference
22
void MKLDNNTester::reset(const TestConfig& dnn,
T
tensor-tang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
                         const TestConfig& ref,
                         size_t batchSize) {
  const bool trans = false;
  const bool useGpu = false;

  // clear
  configs_.clear();
  layerNames_.clear();
  dataLayers_.clear();
  datas_.clear();
  layerMaps_.clear();
  parameters_.clear();
  testLayers_.clear();

  // resize
  configs_.resize(NUM);
  layerNames_.resize(NUM);
  dataLayers_.resize(NUM);
  datas_.resize(NUM);
  layerMaps_.resize(NUM);
  parameters_.resize(NUM);
  testLayers_.resize(NUM);

  // reset configs and layer names
  configs_[DNN] = dnn;
  configs_[REF] = ref;
  layerNames_[DNN] = "mkldnn";     // the first is mkldnn layer
  layerNames_[REF] = "reference";  // second is reference layer

  // reset others
  for (size_t i = 0; i < NUM; ++i) {
    configs_[i].layerConfig.set_name(layerNames_[i]);
    initDataLayer(configs_[i],
                  &(dataLayers_[i]),
                  &(datas_[i]),
                  &(layerMaps_[i]),
                  layerNames_[i],
                  batchSize,
                  trans,
                  useGpu);
    initTestLayer(
        configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
  }
  refLayer_ = testLayers_[REF];
67 68 69 70 71
  dnnLayer_ = std::dynamic_pointer_cast<MKLDNNLayer>(testLayers_[DNN]);
  CHECK(dnnLayer_);
  // for comparison with Paddle reference results,
  // need manually add cpu device output for test
  dnnLayer_->addOutputArgument(-1);
T
tensor-tang 已提交
72 73 74 75 76 77
  EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());

  setInputImgSize();
}

78
void MKLDNNTester::setInputImgSize() {
T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
    for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
      // TODO(TJ): fix me when concat and elewise ready
      dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
      dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
    }
  }
}

// init randome parameters of ref, and copy to mkldnn
89
void MKLDNNTester::randomWgtDatas() {
T
tensor-tang 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  for (size_t i = 0; i < parameters_[REF].size(); ++i) {
    const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    parameters_[REF][i]->randomize();
    dnnValue->copyFrom(*refValue);

    VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
    printVector(dnnValue);
  }
}

// random botdata of ref layer and copy same to mkldnn
103
void MKLDNNTester::randomBotDatas() {
T
tensor-tang 已提交
104 105 106 107 108 109 110 111 112 113
  CHECK_EQ(dataLayers_.size(), NUM);
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
    dataLayers_[DNN][i]->getOutputValue()->copyFrom(
        *(dataLayers_[REF][i]->getOutputValue()));
    VLOG(lvl_) << "Input " << i << " data:";
    printMatrix(dataLayers_[REF][i]->getOutputValue());
  }
}

114
void MKLDNNTester::randomTopDiffs() {
T
tensor-tang 已提交
115
  refLayer_->getOutputGrad()->randomizeUniform();
116 117
  dnnLayer_->getOutput(-1).grad->copyFrom(*(refLayer_->getOutputGrad()));
  VLOG(lvl_) << "Random Backward Input, TopDiff: ";
T
tensor-tang 已提交
118 119 120
  printMatrix(refLayer_->getOutputGrad());
}

121
void MKLDNNTester::checkForward() {
T
tensor-tang 已提交
122
  VLOG(MKLDNN_ALL) << "Check Forward";
123 124 125
  printTopDatas();
  double delta = compareMatrix(dnnLayer_->getOutput(-1).value,
                               refLayer_->getOutputValue());
T
tensor-tang 已提交
126 127 128
  EXPECT_LE(fabs(delta), eps_);
}

129
void MKLDNNTester::checkBackwardData() {
130
  VLOG(MKLDNN_ALL) << "Check Backward Data";
T
tensor-tang 已提交
131 132
  // TODO(TJ): uncomment me when batch norm ready
  // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
T
tensor-tang 已提交
133 134 135 136 137 138 139 140 141 142
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
    const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
    VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
    printMatrix(dnnDiff);
    VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
    printMatrix(refDiff);

    double delta = compareMatrix(dnnDiff, refDiff);
    EXPECT_LE(fabs(delta), eps_);
T
tensor-tang 已提交
143 144 145 146 147
    // TODO(TJ): uncomment me when batch norm ready
    // if (isBN) {
    //  // the other two inputs in batch norm are for moving mean and var
    //  break;
    // }
T
tensor-tang 已提交
148 149 150
  }
}

151
void MKLDNNTester::checkBackwardWgts() {
152
  VLOG(MKLDNN_ALL) << "Check Backward Weight";
T
tensor-tang 已提交
153 154 155 156
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  vector<VectorPtr> dnnWgts;  // used to temply save mkldnn weights
  saveWgt(parameters_[DNN], dnnWgts);

157
  dnnLayer_->convertWeightsToPaddle();
T
tensor-tang 已提交
158 159 160 161 162 163 164 165 166 167 168 169
  for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
    const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
    printVector(dnn);
    VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
    printVector(ref);

    double delta = compareVector(dnn, ref);
    EXPECT_LE(fabs(delta), eps_);
  }

T
tensor-tang 已提交
170
  VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
T
tensor-tang 已提交
171 172 173
  restoreWgt(dnnWgts, parameters_[DNN]);
}

174
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
T
tensor-tang 已提交
175 176 177 178 179 180 181 182 183 184
                           vector<VectorPtr>& to) {
  const bool useGpu = false;
  to.resize(from.size());
  for (size_t i = 0; i < to.size(); ++i) {
    const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
    to[i] = Vector::create(wgt->getSize(), useGpu);
    to[i]->copyFrom(*wgt);
  }
}

185
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
T
tensor-tang 已提交
186 187 188 189 190 191 192 193 194
                              vector<ParameterPtr>& to) {
  CHECK_EQ(from.size(), to.size());
  for (size_t i = 0; i < from.size(); ++i) {
    const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
    wgt->copyFrom(*from[i]);
  }
}

// clear parameters grad
195 196
void MKLDNNTester::clearWgtDiffs(size_t id) {
  CHECK_LE(id, parameters_.size());
T
tensor-tang 已提交
197
  for (size_t n = 0; n < parameters_.size(); ++n) {
198 199 200 201 202 203
    if (id == n || id == parameters_.size()) {
      for (size_t i = 0; i < parameters_[n].size(); ++i) {
        const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
        if (grad) {
          grad->zeroMem();
        }
T
tensor-tang 已提交
204 205 206 207 208
      }
    }
  }
}

209 210
void MKLDNNTester::clearBotDiffs(size_t id) {
  CHECK_LE(id, dataLayers_.size());
T
tensor-tang 已提交
211
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
212 213 214 215 216
    if (id == n || id == dataLayers_.size()) {
      // clear inputs layers of this specific layer
      for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
        dataLayers_[n][i]->getOutputGrad()->zeroMem();
      }
T
tensor-tang 已提交
217 218 219 220
    }
  }
}

221 222
void MKLDNNTester::clearTopDatas(size_t id) {
  CHECK_LE(id, testLayers_.size());
T
tensor-tang 已提交
223
  for (size_t i = 0; i < testLayers_.size(); ++i) {
224 225 226
    if (id == i || id == testLayers_.size()) {
      testLayers_[i]->getOutputValue()->zeroMem();
    }
T
tensor-tang 已提交
227 228 229
  }
}

230
void MKLDNNTester::printTopDatas() {
T
tensor-tang 已提交
231 232 233 234 235 236 237 238 239 240
  if (!log_) {
    return;
  }

  for (int n = 0; n < NUM; ++n) {
    VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
    printMatrix(testLayers_[n]->getOutputValue());
  }
}

241
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
T
tensor-tang 已提交
242 243 244
  if (!log_) {
    return;
  }
T
tensor-tang 已提交
245 246 247 248

  std::ostringstream ostr;
  m->print(ostr);
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
249 250
}

251
void MKLDNNTester::printVector(const VectorPtr& v) {
T
tensor-tang 已提交
252 253 254 255
  if (!log_) {
    return;
  }

T
tensor-tang 已提交
256 257 258
  std::ostringstream ostr;
  v->print(ostr, v->getSize());
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
259 260
}

261
double MKLDNNTester::getDelta(const real* d1,
T
tensor-tang 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
                              const real* d2,
                              size_t len,
                              const float failRate,
                              const float thres) {
  double delta = 0, sum = 0;
  int failCnt = 0;
  const double eps = 1e-5;
  double maxOut = 0;
  for (size_t i = 0; i < len; ++i) {
    double ref = fabs(d2[i]);
    double diff = fabs(d1[i] - d2[i]);
    delta += diff;
    sum += ref;
    if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
      maxOut = std::max(maxOut, diff / ref);
      failCnt++;
    }
  }
  EXPECT_TRUE(std::isnormal(sum));
  EXPECT_FALSE(std::isinf(sum));
  EXPECT_FALSE(std::isnan(delta));
T
tensor-tang 已提交
283 284
  VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
                   << ", delta: " << delta / sum << ", failCnt:" << failCnt;
T
tensor-tang 已提交
285 286 287
  return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}

288
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
T
tensor-tang 已提交
289 290 291 292
  CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
  return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}

293
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
T
tensor-tang 已提交
294 295 296 297
  CHECK_EQ(v1->getSize(), v2->getSize());
  return getDelta(v1->getData(), v2->getData(), v1->getSize());
}

298
void MKLDNNTester::runOnce() {
T
tensor-tang 已提交
299 300 301 302 303 304 305
  // test forward
  randomBotDatas();
  dnnLayer_->forward(PASS_TRAIN);
  refLayer_->forward(PASS_TRAIN);
  checkForward();

  // test backward
306 307 308 309 310 311 312
  // simple updater
  UpdateCallback updateCallback = [](Parameter* para) {
    auto& grad = para->getBuf(PARAMETER_GRADIENT);
    auto& value = para->getBuf(PARAMETER_VALUE);
    real lr = 1e-3;
    value->add(*grad, lr);
  };
T
tensor-tang 已提交
313
  randomTopDiffs();
314 315
  dnnLayer_->backward(updateCallback);
  refLayer_->backward(updateCallback);
T
tensor-tang 已提交
316 317 318 319 320
  checkBackwardData();
  checkBackwardWgts();

  // clear buffers
  // ref code will addto the diff, dnn code will writeto it
321
  // and clearTopDatas(REF) should be coverd by ref layers
T
tensor-tang 已提交
322
  clearBotDiffs(REF);
323
  clearWgtDiffs(REF);
T
tensor-tang 已提交
324 325
}

326
void MKLDNNTester::run(const TestConfig& dnn,
T
tensor-tang 已提交
327 328 329 330 331 332 333 334
                       const TestConfig& ref,
                       size_t batchSize,
                       size_t inputImgH,
                       size_t inputImgW,
                       size_t iter,
                       float epsilon,
                       bool log,
                       int level) {
T
tensor-tang 已提交
335 336
  VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type()
                     << " vs " << ref.layerConfig.type();
T
tensor-tang 已提交
337 338 339 340 341 342 343
  ih_ = inputImgH;
  iw_ = inputImgW;
  iter_ = iter;
  eps_ = epsilon;
  log_ = log;
  lvl_ = level;

T
tensor-tang 已提交
344
  // Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
T
tensor-tang 已提交
345
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
346 347 348
  randomWgtDatas();
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
349
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
350
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
351 352
    runOnce();
  }
T
tensor-tang 已提交
353

T
tensor-tang 已提交
354 355 356 357 358
  if (parameters_[DNN].empty()) {
    // has no paramters
    return;
  }

T
tensor-tang 已提交
359 360 361 362
  // After run some iterations, the mkldnn weight has been stored in dnnLayer
  // and we can also get the mkldnn weight parameter header format.
  // Weight parameter should always be index 0 (and bias index 1).
  // TODO(TJ): should also consider mean and var format when batchnorm ready
T
tensor-tang 已提交
363 364 365 366 367 368 369
  int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat();
  int refWgtFmt = parameters_[REF][0]->getHeaderFormat();
  if (dnnWgtFmt == refWgtFmt) {
    // weight format are equal, so no need check more
    return;
  }

T
tensor-tang 已提交
370
  // then save the weights and restart again
T
tensor-tang 已提交
371 372 373 374
  vector<VectorPtr> dnnWgts, refWgts;
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  saveWgt(parameters_[DNN], dnnWgts);
  saveWgt(parameters_[REF], refWgts);
T
tensor-tang 已提交
375

T
tensor-tang 已提交
376
  // restart again with dnn weight format
T
tensor-tang 已提交
377
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
378 379
  // TODO(TJ): should also considerate mean and var format when batchnorm ready
  parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt);
T
tensor-tang 已提交
380

T
tensor-tang 已提交
381 382 383 384 385
  // restore wgt
  restoreWgt(dnnWgts, parameters_[DNN]);
  restoreWgt(refWgts, parameters_[REF]);
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
386

T
tensor-tang 已提交
387
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
388
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
389 390 391 392 393
    runOnce();
  }
}

}  //  namespace paddle