mkldnn_helper.h 14.6 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
P
Physher 已提交
17
#include <memory>
G
gongweibao 已提交
18
#include <string>
19
#include <utility>
20
#include <vector>
21
#include "mkldnn.hpp"
22
#include "paddle/fluid/framework/operator.h"
M
mozga-intel 已提交
23
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
24
namespace paddle {
25
#ifdef PADDLE_WITH_MKLDNN
A
Adam 已提交
26
using MKLDNNMemoryFormat = mkldnn::memory::format_tag;
27
#endif
T
tensor-tang 已提交
28 29 30 31 32
namespace platform {

using MKLDNNStream = mkldnn::stream;
using MKLDNNEngine = mkldnn::engine;
using MKLDNNMemory = mkldnn::memory;
33
using MKLDNNMemoryDescriptor = mkldnn::memory::desc;
T
tensor-tang 已提交
34 35 36
using MKLDNNPrimitive = mkldnn::primitive;
using MKLDNNPrimitiveDesc = mkldnn::handle<mkldnn_primitive_desc_t>;

37 38 39 40 41
typedef std::unique_ptr<MKLDNNStream> MKLDNNStreamPtr;
typedef std::unique_ptr<MKLDNNEngine> MKLDNNEnginePtr;
typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
T
tensor-tang 已提交
42

43 44 45 46 47
template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

K
Krzysztof Binias 已提交
48 49 50 51 52
template <typename Type>
void* to_void_reinterpret_cast(const Type* t) {
  return reinterpret_cast<void*>(const_cast<Type*>(t));
}

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <class Type>
using tf_desc = typename Type::desc;

template <class Type>
using tf_pd = typename Type::primitive_desc;

template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
                                                    Args&&... args) {
  auto desc = tf_desc<Type>(mkldnn::prop_kind::forward, (args)...);
  auto pd = new tf_pd<Type>(desc, e);
  return std::shared_ptr<tf_pd<Type>>(pd);
}

template <typename Type, typename Engine, typename Primitive, typename... Args>
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p,
                                   Args&&... args) {
  auto desc = tf_desc<Type>(args...);
  return tf_pd<Type>(desc, e, p);
}

74 75 76
inline void MatchShapeToLayout(framework::Tensor* tensor_in,
                               framework::DataLayout from,
                               framework::DataLayout to) {
77 78 79
  // In these data layouts, channel dimension is either on 2nd position: nChw or
  // at last nhwC, so for dim==2 these layouts are the same and nothing should
  // be done. Similarly for dim==1 when you have just one possible combination.
80 81 82 83
  if (tensor_in->dims().size() < 3) {
    return;
  }

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  switch (from) {
    case framework::DataLayout::kMKLDNN:
      if (to == framework::DataLayout::kNHWC) {
        auto dims = framework::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
        tensor_in->Resize(framework::make_ddim(dims));
      }
      break;
    case framework::DataLayout::kNHWC:
      if (to == framework::DataLayout::kMKLDNN) {
        auto dims = framework::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.end() - 1, dims.end());
        tensor_in->Resize(framework::make_ddim(dims));
      }
      break;
    default:
      break;
  }
}

104 105 106 107 108
struct mkldnn_dummy_primitive {
  struct primitive_desc {};
  struct desc {};
};

A
Adam 已提交
109
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int64_t>& dims,
110
                                          mkldnn::memory::data_type data_type,
111
                                          MKLDNNMemoryFormat format) {
A
Adam 已提交
112
  return mkldnn::memory::desc({dims}, data_type, format);
113 114 115 116 117 118 119
}

inline bool CanMKLDNNBeUsed(const framework::ExecutionContext& ctx) {
  bool use_mkldnn = ctx.Attr<bool>("use_mkldnn");
  return use_mkldnn && platform::is_cpu_place(ctx.GetPlace());
}

120 121 122 123 124 125 126 127 128 129 130 131
inline void ClearMKLDNNCache(const platform::Place& place) {
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
    dev_ctx->ResetBlobMap();
    platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
        paddle::framework::DataLayout::kNCHW);
  }
}

132 133
template <typename Type>
mkldnn::memory::data_type MKLDNNGetDataType() {
A
Adam 已提交
134
  return mkldnn::memory::data_type::undef;
135 136 137 138
}

template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<float>() {
139 140 141 142 143
  return mkldnn::memory::data_type::f32;
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int32_t>() {
  return mkldnn::memory::data_type::s32;
144
}
P
Physher 已提交
145 146
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int8_t>() {
147
  return mkldnn::memory::data_type::s8;
P
Physher 已提交
148 149 150
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<uint8_t>() {
151
  return mkldnn::memory::data_type::u8;
P
Physher 已提交
152 153
}

A
Adam 已提交
154 155
inline void Reorder(mkldnn::memory src, mkldnn::memory dst,
                    const mkldnn::engine& engine) {
M
mozga-intel 已提交
156
  auto reorder_prim = mkldnn::reorder(src, dst);
A
Adam 已提交
157 158 159
  mkldnn::stream astream(engine);
  reorder_prim.execute(astream, src, dst);
  astream.wait();
M
mozga-intel 已提交
160 161
}

A
Adam 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
inline mkldnn::memory::format_tag GetMKLDNNFormat(
    mkldnn::memory::desc mem_desc) {
  auto ndims = mem_desc.data.ndims;
  auto strides = mem_desc.data.format_desc.blocking.strides;
  auto inner_nblks = mem_desc.data.format_desc.blocking.inner_nblks;
  auto inner_blks = mem_desc.data.format_desc.blocking.inner_blks;
  auto inner_idxs = mem_desc.data.format_desc.blocking.inner_idxs;

  if (ndims == 1) {
    return mkldnn::memory::format_tag::x;
  } else if (ndims == 2) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1]) {
        return mkldnn::memory::format_tag::nc;
      } else {
        return mkldnn::memory::format_tag::cn;
      }
    }
  } else if (ndims == 3) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2]) {
        return mkldnn::memory::format_tag::ncw;
A
Adam 已提交
184 185
      } else if (strides[1] >= strides[0] && strides[0] >= strides[2]) {
        return mkldnn::memory::format_tag::ntc;
A
Adam 已提交
186 187 188 189 190 191 192 193 194
      } else {
        return mkldnn::memory::format_tag::nwc;
      }
    }
  } else if (ndims == 4) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3]) {
        return mkldnn::memory::format_tag::nchw;
195 196 197
      } else if (strides[2] >= strides[3] && strides[3] >= strides[1] &&
                 strides[1] >= strides[0]) {
        return mkldnn::memory::format_tag::cdba;
A
Adam 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
      } else {
        return mkldnn::memory::format_tag::nhwc;
      }
    } else if (inner_nblks == 1) {
      if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw16c;
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw8c;
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdb8a;
        }
      } else if (inner_blks[0] == 4 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw4c;
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdb16a;
        }
      }
    } else if (inner_nblks == 2) {
      if (inner_blks[0] == 16 && inner_blks[1] == 16) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
          return mkldnn::memory::format_tag::OIhw16i16o;
        }
      } else if (inner_blks[0] == 8 && inner_blks[1] == 8) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
          return mkldnn::memory::format_tag::OIhw8i8o;
        }
      }
    }
  } else if (ndims == 5) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4]) {
        return mkldnn::memory::format_tag::ncdhw;
      } else {
        return mkldnn::memory::format_tag::ndhwc;
      }
    } else if (inner_nblks == 1) {
      if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdeb8a;
        }
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::aBcde8b;
        }
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdeb16a;
        }
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::aBcde16b;
        }
      }
    }
  } else if (ndims == 6) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4] &&
          strides[4] >= strides[5]) {
        return mkldnn::memory::format_tag::abcdef;
      }
    }
  }
  // DEBUG CODE - KEEP UNTILL TENSOR.MEMORY_DESC IMPLEMENTED
  // std::cout<<"@@@@@@@@@@ UNDEFINED FORMAT @@@@@@@@@@@@@@@@@@@"<<std::endl;
  // std::cout<<"NDIMS: "<<ndims<<std::endl;
  // std::cout<<"INNER_NBLKS: "<<inner_nblks<<std::endl;
  // for (int i=0;i<ndims;++i) {
  //   std::cout<<"STRIDE["<<i<<"]: "<<strides[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_BLKS["<<i<<"]: "<<inner_blks[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_IDXS["<<i<<"]: "<<inner_idxs[i]<<std::endl;
  // }
  return mkldnn::memory::format_tag::undef;
M
mozga-intel 已提交
284 285
}

A
Adam 已提交
286 287 288
inline mkldnn::memory::format_tag GetMKLDNNFormat(const mkldnn::memory memory) {
  auto mem_desc = memory.get_desc();
  return GetMKLDNNFormat(mem_desc);
289 290
}

291 292
inline MKLDNNMemoryFormat MKLDNNFormatForSize(size_t dims_size,
                                              MKLDNNMemoryFormat data_format) {
293
  if (dims_size == 1) {
294
    return MKLDNNMemoryFormat::x;
295
  } else if (dims_size == 2) {
296
    return MKLDNNMemoryFormat::nc;
297
  } else if (dims_size == 3) {
298 299 300 301
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::nwc;
302
    }
303
  } else if (dims_size == 4) {
304 305
    if (data_format == MKLDNNMemoryFormat::goihw) {
      return MKLDNNMemoryFormat::oihw;
306
    }
307
  } else if (dims_size == 5) {
308 309
    if (data_format == MKLDNNMemoryFormat::goidhw) {
      return MKLDNNMemoryFormat::oidhw;
310
    }
311 312 313 314
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncdhw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::ndhwc;
315
    }
316 317 318 319
  }
  return data_format;
}

320
inline MKLDNNMemoryFormat data_format_to_memory_format(
321 322 323
    const std::string& data_format) {
  switch (framework::StringToDataLayout(data_format)) {
    case framework::DataLayout::kNHWC:
324
      return MKLDNNMemoryFormat::nhwc;
325
    case framework::DataLayout::kNCHW:
326
      return MKLDNNMemoryFormat::nchw;
327
    default:
328
      return MKLDNNMemoryFormat::any;
329 330 331
  }
}

332
inline MKLDNNMemoryFormat StringToMKLDNNFormat(std::string* format) {
333 334 335
  std::transform(format->begin(), format->end(), format->begin(), ::tolower);

  if (!format->compare("nchw")) {
336
    return MKLDNNMemoryFormat::nchw;
337
  } else if (!format->compare("nchw16c")) {
338
    return MKLDNNMemoryFormat::nChw16c;
339
  } else if (!format->compare("nchw8c")) {
340
    return MKLDNNMemoryFormat::nChw8c;
341
  } else if (!format->compare("nhwc")) {
342
    return MKLDNNMemoryFormat::nhwc;
343
  } else {
344
    return MKLDNNMemoryFormat::any;
345 346 347
  }
}

A
Adam 已提交
348 349 350 351 352
inline std::string ThreadIDasStr(void) {
  return std::to_string(
      std::hash<std::thread::id>()(std::this_thread::get_id()));
}

353 354 355
template <typename T>
inline void AppendKey(std::string* key, const T& num) {
  key->append(std::to_string(num));
A
Adam 已提交
356 357
}

A
Adam 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
template <>
inline void AppendKey(std::string* key,
                      const mkldnn::memory::format_tag& format) {
  key->append(std::to_string(static_cast<int>(format)));
}

template <>
inline void AppendKey(std::string* key,
                      const mkldnn::memory::data_type& data_type) {
  key->append(std::to_string(static_cast<int>(data_type)));
}

template <>
inline void AppendKey(std::string* key, const mkldnn::algorithm& algorithm) {
  key->append(std::to_string(static_cast<int>(algorithm)));
}

template <>
inline void AppendKey(std::string* key,
                      const mkldnn::normalization_flags& flags) {
  key->append(std::to_string(static_cast<int>(flags)));
}

381 382
inline void AppendKey(std::string* key, const std::string& str) {
  key->append(str);
A
Adam 已提交
383 384
}

385
inline void AppendKey(std::string* key, const char* str) { key->append(str); }
A
Adam 已提交
386

A
Adam 已提交
387 388
template <typename T>
inline void AppendKey(std::string* key, const std::vector<T>& dims) {
389
  for (size_t i = 0; i < dims.size(); i++) {
A
Adam 已提交
390 391 392 393
    AppendKey(key, std::to_string(dims[i]));
  }
}

394 395 396
template <typename... ArgTypes>
inline std::string CreateKey(ArgTypes&&... args) {
  std::string key;
397
  key.reserve(64);
398
  using expand_type = int[];
399
  expand_type{0, (AppendKey(&key, std::forward<ArgTypes>(args)), 0)...};
400 401 402
  return key;
}

A
Adam 已提交
403 404
inline std::vector<std::vector<int64_t>> ToMkldnnPadding(
    const std::vector<int64_t>& paddings) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
  if (paddings.size() == 6) {
    int padding_front = paddings[0];
    int padding_back = paddings[1];
    int padding_top = paddings[2];
    int padding_bottom = paddings[3];
    int padding_left = paddings[4];
    int padding_right = paddings[5];

    return {{padding_front, padding_top, padding_left},
            {padding_back, padding_bottom, padding_right}};
  } else {
    int padding_top = paddings[0];
    int padding_bottom = paddings[1];
    int padding_left = paddings[2];
    int padding_right = paddings[3];

    return {{padding_top, padding_left}, {padding_bottom, padding_right}};
  }
}

A
Adam 已提交
425 426
enum class RNNReorderType { PP_NTC, PP_TNC, NTC_PP, TNC_PP };

T
tensor-tang 已提交
427 428
}  // namespace platform
}  // namespace paddle