interpolate_op.cc 9.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6 7 8 9 10 11
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

12
#include "paddle/fluid/operators/interpolate_op.h"
S
sneaxiy 已提交
13
#include <memory>
14
#include <string>
15 16 17 18 19 20 21 22
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

23
class InterpolateOp : public framework::OperatorWithKernel {
24 25 26 27 28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
30
                   "Input(X) of InterpolateOp should not be null.");
31
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
32 33 34 35 36 37
                   "Output(Out) of InterpolationOp should not be null.");

    auto interp_method = ctx->Attrs().Get<std::string>("interp_method");
    PADDLE_ENFORCE(
        "bilinear" == interp_method || "nearest" == interp_method,
        "Interpolation method can only be \"bilinear\" or \"nearest\".");
38 39 40 41 42 43

    auto dim_x = ctx->GetInputDim("X");  // NCHW format
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "X's dimension must be 4");

44
    if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
45 46 47 48
      auto out_size_dim = ctx->GetInputDim("OutSize");
      PADDLE_ENFORCE_EQ(out_size_dim.size(), 1,
                        "OutSize's dimension size must be 1");
      PADDLE_ENFORCE_EQ(out_size_dim[0], 2, "OutSize's dim[0] must be 2");
49 50
      ctx->ShareLoD("X", "Out");
      return;
51 52 53 54 55 56 57 58
    }
    std::vector<int64_t> dim_out({dim_x[0], dim_x[1], out_h, out_w});
    ctx->SetOutputDim("Out", framework::make_ddim(dim_out));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
59 60
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
61 62 63
  }
};

64
class InterpolateOpMaker : public framework::OpProtoAndCheckerMaker {
65 66 67
 public:
  void Make() override {
    AddInput("X",
68 69
             "The input tensor of interpolate operator, "
             "This is a 4-D tensor with shape of [N,  C, H, w].");
70
    AddInput("OutSize",
71
             "This is a 1-D tensor with two numbers to specify output size. "
72 73
             "The first number is height and the second number is width.")
        .AsDispensable();
74 75 76
    AddOutput("Out",
              "The output tensor of interpolate operator, "
              "This is a 4-D tensor with shape of [N, C, H, W].");
77

78 79
    AddAttr<int>("out_h", "output height of interpolate op.");
    AddAttr<int>("out_w", "output width of interpolate op.");
80 81 82 83 84 85
    AddAttr<std::string>("interp_method",
                         "(string, default \"bilinear\"), interpolation "
                         "method, can be \"bilinear\" for "
                         "bilinear interpolation and \"nearest\" for nearest "
                         "neighbor interpolation.")
        .SetDefault("bilinear");
86 87
    AddAttr<bool>(
        "align_corners",
T
Tink_Y 已提交
88
        "an optional bool. Defaults to True. "
89 90
        "If True, the centers of 4 corner pixels of the input and output "
        "tensors are aligned, preserving the values at the corner pixels, "
T
Tink_Y 已提交
91
        "If False, are not aligned")
92 93
        .SetDefault(true);
    AddAttr<int>("align_mode",
T
Tink_Y 已提交
94
                 "(int, default \'1\'), optional for bilinear interpolation, "
T
tink2123 已提交
95 96
                 "can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , "
                 "can be \'1\' for src_idx = scale*dst_index .")
T
tink2123 已提交
97
        .SetDefault(1);
98
    AddComment(R"DOC(
99 100 101 102 103
          This operator samples input X to given output shape by using specified
          interpolation method, the interpolation methods can be \"nearest\"
          for nearest neighbor interpolation and \"bilinear\" for bilinear 
          interpolation.

104
          Nearest neighbor interpolation is to perform nearest neighbor interpolation
105
          in both the 3rd dimention(in height direction) and the 4th dimention(in width 
106 107
          direction) on input tensor.
            
108 109 110 111 112 113
          Bilinear interpolation is an extension of linear interpolation for 
          interpolating functions of two variables (e.g. H-direction and 
          W-direction in this op) on a rectilinear 2D grid. The key idea is 
          to perform linear interpolation first in one direction, and then 
          again in the other direction.

T
tink2123 已提交
114
          Align_corners and align_mode are optinal parameters,the calculation method 
115 116 117 118
          of interpolation can be selected by them.
          
          Example:

T
tink2123 已提交
119
          For scale:
120 121 122 123 124 125 126 127 128 129 130 131
          
            if align_corners = True and out_{size}>1 :

              scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
            
            else:
              
              scale_{factor} = float(in_{size}/out_{size})
            
          
          Nearest neighbor interpolation:
          
T
tink2123 已提交
132
          if:
133 134 135 136 137 138 139 140
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
              W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

T
tink2123 已提交
141
          else:
142 143 144 145 146 147 148 149 150 151
              align_corners = True

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})

          Bilinear interpolation:

T
tink2123 已提交
152
          if:
153 154 155 156 157 158 159 160 161
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


T
tink2123 已提交
162
          else:
163 164 165 166 167 168 169 170 171
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

          

172
          For details of nearest neighbor interpolation, please refer to Wikipedia: 
173
          https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
174 175 176

          For details of bilinear interpolation, please refer to Wikipedia: 
          https://en.wikipedia.org/wiki/Bilinear_interpolation
177 178 179 180
         )DOC");
  }
};

181
class InterpolateOpGrad : public framework::OperatorWithKernel {
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
198 199 200
    return framework::OpKernelType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type(),
        ctx.GetPlace());
201 202 203
  }
};

S
sneaxiy 已提交
204 205 206 207 208 209 210 211 212
class InterpolateGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType(ForwardOp().Type() + "_grad");
    op->SetInput("X", Input("X"));
S
sneaxiy 已提交
213 214 215
    if (ForwardOp().Inputs().count("OutSize") > 0) {
      op->SetInput("OutSize", Input("OutSize"));
    }
S
sneaxiy 已提交
216 217 218 219 220 221 222 223 224 225
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(InterpolateGradNoNeedBufferVarsInference,
                                      "X");

226 227 228 229
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
230
REGISTER_OPERATOR(bilinear_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
231 232 233
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(bilinear_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
234
REGISTER_OPERATOR(nearest_interp, ops::InterpolateOp, ops::InterpolateOpMaker,
S
sneaxiy 已提交
235 236 237
                  ops::InterpolateGradDescMaker);
REGISTER_OPERATOR(nearest_interp_grad, ops::InterpolateOpGrad,
                  ops::InterpolateGradNoNeedBufferVarsInference);
238 239 240 241 242 243
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::InterpolateKernel<float>,
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad, ops::InterpolateGradKernel<float>,
                       ops::InterpolateGradKernel<double>);
REGISTER_OP_CPU_KERNEL(nearest_interp, ops::InterpolateKernel<float>,
244 245
                       ops::InterpolateKernel<double>,
                       ops::InterpolateKernel<uint8_t>);
246
REGISTER_OP_CPU_KERNEL(nearest_interp_grad, ops::InterpolateGradKernel<float>,
247
                       ops::InterpolateGradKernel<double>);