engine.cc 16.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
19
#include <string>
W
wanghuancoder 已提交
20

21
#include "cuda_runtime_api.h"  // NOLINT
Y
Yan Chunwei 已提交
22
#include "paddle/fluid/inference/tensorrt/helper.h"
23
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

30 31
int TensorRTEngine::runtime_batch_ = 1;

32 33 34 35 36
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
37
    infer_network_.reset(infer_builder_->createNetworkV2(
38 39 40
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
  } else {
41
    infer_network_.reset(infer_builder_->createNetworkV2(0U));
42
  }
43 44

  infer_builder_config_.reset(infer_builder_->createBuilderConfig());
W
wenbin 已提交
45 46 47 48
  // optim_profile_ = infer_builder_->createOptimizationProfile();
  optim_profiles_.resize(max_profile_num_);
  for (int i = 0; i < max_profile_num_; i++)
    optim_profiles_[i] = infer_builder_->createOptimizationProfile();
Y
Yan Chunwei 已提交
49 50
}

51 52
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
53
  freshDeviceId();
54 55 56 57 58 59 60
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
#endif
61
  }
N
nhzlx 已提交
62 63 64
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
65
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
66
  freshDeviceId();
67
  VLOG(3) << "TRT to freeze network";
68 69 70 71 72 73 74
  PADDLE_ENFORCE_NOT_NULL(infer_builder_,
                          platform::errors::InvalidArgument(
                              "Inference builder of TRT is null. Please make "
                              "sure you call InitNetwork first."));
  PADDLE_ENFORCE_NOT_NULL(network(),
                          platform::errors::InvalidArgument(
                              "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
75 76
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
77 78
  infer_builder_config_->setMaxWorkspaceSize(max_workspace_);

Z
Zhaolong Xing 已提交
79 80 81
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
82
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
Z
Zhaolong Xing 已提交
83 84 85
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
86 87
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
88 89 90
    }
  }

91
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);
Z
Zhaolong Xing 已提交
92
  if (enable_int8) {
93 94 95
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
    infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);

96
    if (calibrator_) {
97
      infer_builder_config_->setInt8Calibrator(calibrator_);
98
    } else {
99
      infer_builder_config_->setInt8Calibrator(nullptr);
100 101 102 103 104 105 106 107 108

#if IS_TRT_VERSION_GE(5000)
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
109 110
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
111 112 113 114
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
115

116 117
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
118 119 120 121
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
122 123 124
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
125 126
        }
      }
127

128
#if IS_TRT_VERSION_GE(5122)
129 130 131 132 133 134 135 136 137 138
      auto is_layer_int8 = [&](nvinfer1::ILayer *layer) -> bool {
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (!temp_in->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its input("
                    << temp_in->getName() << ") doesn't have dynamic range.";
            return false;
          }
        }
139 140
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
141 142 143 144 145
          if (!temp_out->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") doesn't have dynamic range.";
            return false;
146 147
          }
        }
148 149 150 151 152 153
        return true;
      };
      // If a layer's output is the network's output, or not all of its inputs
      // and outputs have scales,
      // this layer's precision and output type are set to float32.
      // This step has no effect if this layer is fused during TRT optimization.
154
      int layers_no_int8 = 0;
155 156 157 158
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
        if (!is_layer_int8(layer)) {
          layer->setPrecision(nvinfer1::DataType::kFLOAT);
159
          ++layers_no_int8;
160
        }
161
      }
162 163 164 165 166 167 168
      // Disable int8 or build engine failed if all layers aren't int8
      if (layers_no_int8 == network()->getNbLayers()) {
        nvinfer1::BuilderFlags flags = infer_builder_config_->getFlags();
        flags = flags & ~(1U << static_cast<int>(nvinfer1::BuilderFlag::kINT8));
        // reset flags
        infer_builder_config_->setFlags(flags);
      }
169 170 171 172 173
#else
      LOG(WARNING) << "If your TensorRT version is lower than 5.1.2.2, you "
                      "must provide quantization scales for all tensors using "
                      "TRT to run.";
#endif
174 175
#endif
    }
N
nhzlx 已提交
176
  }
Y
Yan Chunwei 已提交
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  if (use_dla_) {
    if (!enable_int8 && !enable_fp16) {
      LOG(WARNING) << "TensorRT DLA must be used with int8 or fp16, but you "
                      "set float32, so DLA is not used.";
    } else if (infer_builder_->getNbDLACores() == 0) {
      LOG(WARNING)
          << "TensorRT DLA is set by config, but your device does not have "
             "DLA, so DLA is not used.";
    } else {
      if (dla_core_ < 0 || dla_core_ >= infer_builder_->getNbDLACores()) {
        dla_core_ = 0;
        LOG(WARNING) << "Invalid DLACore, must be 0 < DLACore < "
                     << infer_builder_->getNbDLACores() << ", but got "
                     << dla_core_ << ", so use use 0 as default.";
      }
193 194 195
      infer_builder_config_->setDefaultDeviceType(nvinfer1::DeviceType::kDLA);
      infer_builder_config_->setDLACore(dla_core_);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kGPU_FALLBACK);
196 197 198 199 200
      LOG(INFO) << "TensorRT DLA enabled in FreezeNetwork(), DLACore "
                << dla_core_;
    }
  }

201 202
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
203
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
W
wenbin 已提交
204 205
    for (int i = 0; i < max_profile_num_; i++) {
      for (auto &input : min_input_shape_) {
206
#if IS_TRT_VERSION_LT(7000)
W
wenbin 已提交
207 208 209 210 211 212 213 214 215 216 217
        // trt6 will check all_of input > 0
        if (!(std::all_of(input.second.begin(), input.second.end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(max_input_shape_[input.first].begin(),
                          max_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }) &&
              std::all_of(optim_input_shape_[input.first].begin(),
                          optim_input_shape_[input.first].end(),
                          [](int x) { return x > 0; }))) {
          continue;
        }
218
#endif
W
wenbin 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        VLOG(4) << "TRT dynamic_shape set " << input.first
                << " min: " << Vec2Str(input.second)
                << ", max: " << Vec2Str(max_input_shape_[input.first])
                << ", opt: " << Vec2Str(optim_input_shape_[input.first]);

        optim_profiles_[i]->setDimensions(
            input.first.c_str(), nvinfer1::OptProfileSelector::kMIN,
            Vec2TRT_Dims(input.second, input.first, true));
        optim_profiles_[i]->setDimensions(
            input.first.c_str(), nvinfer1::OptProfileSelector::kMAX,
            Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
        optim_profiles_[i]->setDimensions(
            input.first.c_str(), nvinfer1::OptProfileSelector::kOPT,
            Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
      }
      infer_builder_config_->addOptimizationProfile(optim_profiles_[i]);
235
    }
236 237 238 239 240 241
    if (WithFp16() && disable_trt_plugin_fp16()) {
      LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                   "disabled the fp16 mode of TRT Plugin,\n"
                << "you can reopen it with "
                   "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                   "opt_shape, false /*disable_trt_plugin_fp16*/)'";
242
    }
243 244
#endif
  }
245
#if IS_TRT_VERSION_GE(8200)
246 247 248 249
  if (use_inspector_) {
    infer_builder_config_->setProfilingVerbosity(
        nvinfer1::ProfilingVerbosity::kDETAILED);
  }
250 251
#endif

252
#if IS_TRT_VERSION_LT(8000)
253 254
  infer_engine_.reset(infer_builder_->buildEngineWithConfig(
      *network(), *infer_builder_config_));
255
#else
J
JingZhuangzhuang 已提交
256
  infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSPARSE_WEIGHTS);
Z
zlsh80826 已提交
257
  ihost_memory_.reset(infer_builder_->buildSerializedNetwork(
258 259
      *network(), *infer_builder_config_));
  infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
Z
zlsh80826 已提交
260 261
  infer_engine_.reset(runtime->deserializeCudaEngine(ihost_memory_->data(),
                                                     ihost_memory_->size()));
262
#endif
263

264 265 266 267
  PADDLE_ENFORCE_NOT_NULL(
      infer_engine_, platform::errors::Fatal(
                         "Build TensorRT cuda engine failed! Please recheck "
                         "you configurations related to paddle-TensorRT."));
268

W
wenbin 已提交
269 270 271 272 273 274 275
  binding_num_ = infer_engine_->getNbBindings();
  // reset status for dynamic shape clone
  if (max_profile_num_ > 1) {
    infer_context_.clear();
    cur_profile_num_ = 0;
  }

276
  GetEngineInfo();
Y
Yan Chunwei 已提交
277 278
}

279
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
280
                                                nvinfer1::DataType dtype,
281
                                                const nvinfer1::Dims &dims) {
282 283 284 285
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
286 287 288 289 290 291 292 293 294 295
  PADDLE_ENFORCE_NOT_NULL(
      input, platform::errors::InvalidArgument("Adding input %s failed in "
                                               "TensorRT inference network. "
                                               "Please recheck your input.",
                                               name));
  PADDLE_ENFORCE_EQ(input->isNetworkInput(), true,
                    platform::errors::InvalidArgument(
                        "Input %s is not the input of TRT inference network. "
                        "Please recheck your input.",
                        name));
L
Luo Tao 已提交
296
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
297 298 299
  return input;
}

300 301 302
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
303
  SetITensor(name, output);
304 305 306
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
Y
Yan Chunwei 已提交
307
  output->setName(name.c_str());
308 309 310 311 312
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
313
  network()->markOutput(*output);
314 315 316 317 318
  PADDLE_ENFORCE_EQ(
      output->isNetworkOutput(), true,
      platform::errors::InvalidArgument(
          "The output %s of TRT engine should be the output of the network.",
          name));
N
nhzlx 已提交
319 320
}

321 322
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
323 324 325
  PADDLE_ENFORCE_NOT_NULL(
      output, platform::errors::InvalidArgument(
                  "The output %s of TRT engine should not be null.", name));
L
Luo Tao 已提交
326
  output->setName(name.c_str());
327 328 329 330 331
  PADDLE_ENFORCE_EQ(output->isNetworkInput(), false,
                    platform::errors::InvalidArgument(
                        "The output %s of TRT engine should not be the input "
                        "of the network at the same time.",
                        name));
332
  network()->markOutput(*output);
L
Luo Tao 已提交
333 334
}

335 336
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
337 338 339 340 341 342 343
  PADDLE_ENFORCE_NOT_NULL(
      tensor, platform::errors::InvalidArgument(
                  "Tensor named %s of TRT engine should not be null.", name));
  PADDLE_ENFORCE_EQ(
      0, itensor_map_.count(name),
      platform::errors::InvalidArgument(
          "Tensor named %s of TRT engine should not be duplicated", name));
L
Luo Tao 已提交
344 345 346
  itensor_map_[name] = tensor;
}

347
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
348 349 350
  PADDLE_ENFORCE_EQ(itensor_map_.count(name), true,
                    platform::errors::NotFound(
                        "Tensor named %s is not found in TRT engine", name));
L
Luo Tao 已提交
351 352 353
  return itensor_map_[name];
}

354 355 356 357
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

358 359 360 361
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
362 363
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
364 365
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
366
  platform::CPUPlace cpu_place;
367 368 369 370 371
  PADDLE_ENFORCE_EQ(weight_map.count(name_with_suffix), 0,
                    platform::errors::AlreadyExists(
                        "The weight named %s is set into the weight map "
                        "twice in TRT OP converter.",
                        name_with_suffix));
372 373
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
374 375
  paddle::framework::TensorCopySync(*weight_tensor, cpu_place,
                                    weight_map[name_with_suffix].get());
376 377 378
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
379 380 381
  return weight_data;
}

382 383
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

384
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPlugin(
385 386
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
387
  owned_plugin_.emplace_back(plugin);
388
  return network()->addPluginV2(inputs, num_inputs, *plugin);
389 390
}

391 392 393 394 395 396 397
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2Ext(
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRTV2Ext *plugin) {
  owned_plugin_v2ext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

398 399 400 401 402 403 404
nvinfer1::IPluginV2Layer *TensorRTEngine::AddPluginV2IOExt(
    nvinfer1::ITensor *const *inputs, int num_inputs,
    nvinfer1::IPluginV2IOExt *plugin) {
  owned_plugin_v2ioext_.emplace_back(plugin);
  return network()->addPluginV2(inputs, num_inputs, *plugin);
}

N
nhzlx 已提交
405 406 407
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
408 409 410 411
  PADDLE_ENFORCE_LT(device_id_, count,
                    platform::errors::OutOfRange(
                        "Device id %d exceeds the current device count: %d.",
                        device_id_, count));
L
Leo Chen 已提交
412
  platform::SetDeviceId(device_id_);
N
nhzlx 已提交
413 414
}

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
void TensorRTEngine::GetEngineInfo() {
#if IS_TRT_VERSION_GE(8200)
  LOG(INFO) << "====== engine info ======";
  std::unique_ptr<nvinfer1::IEngineInspector> infer_inspector(
      infer_engine_->createEngineInspector());
  auto infer_context = context();
  infer_inspector->setExecutionContext(infer_context);
  LOG(INFO) << infer_inspector->getEngineInformation(
      nvinfer1::LayerInformationFormat::kONELINE);
  LOG(INFO) << "====== engine info end ======";
#else
  LOG(INFO) << "Inspector needs TensorRT version 8.2 and after.";
#endif
}

Y
Yan Chunwei 已提交
430 431 432
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle