conv2d_op.cc 3.9 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

L
Luo Tao 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
L
Luo Tao 已提交
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
L
Luo Tao 已提交
16 17 18 19 20

namespace paddle {
namespace inference {
namespace tensorrt {

L
Luo Tao 已提交
21 22
class Conv2dOpConverter : public OpConverter {
 public:
23
  void operator()(const framework::proto::OpDesc& op,
24
                  const framework::Scope& scope, bool test_mode) override {
L
Luo Tao 已提交
25 26
    LOG(INFO)
        << "convert a fluid conv2d op to tensorrt conv layer without bias";
N
nhzlx 已提交
27 28

    framework::OpDesc op_desc(op, nullptr);
29 30 31
    std::cout << "Conv op: " << std::endl;
    std::cout << op_desc.Input("Input").front() << std::endl;
    std::cout << op_desc.Output("Output").front() << std::endl;
N
nhzlx 已提交
32 33 34 35 36 37 38 39 40 41
    PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1);
    PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1);  // Y is a weight
    PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1);

    auto* X = engine_->GetITensor(op_desc.Input("Input").front());
    // Declare weights
    auto* Y_v = scope.FindVar(op_desc.Input("Filter").front());
    PADDLE_ENFORCE_NOT_NULL(Y_v);
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();

N
nhzlx 已提交
42
    platform::CPUPlace cpu_place;
N
nhzlx 已提交
43 44
    std::unique_ptr<framework::LoDTensor> weight_tensor(
        new framework::LoDTensor());
N
nhzlx 已提交
45
    weight_tensor->Resize(Y_t->dims());
N
nhzlx 已提交
46 47
    TensorCopySync((*Y_t), cpu_place, weight_tensor.get());

N
nhzlx 已提交
48 49 50 51 52 53 54
    auto* weight_data =
        weight_tensor->mutable_data<float>(platform::CPUPlace());

    PADDLE_ENFORCE_EQ(weight_tensor->dims().size(), 4UL);
    const int n_output = weight_tensor->dims()[0];
    const int filter_h = weight_tensor->dims()[2];
    const int filter_w = weight_tensor->dims()[3];
N
nhzlx 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    const int groups = boost::get<int>(op_desc.GetAttr("groups"));
    const std::vector<int> dilations =
        boost::get<std::vector<int>>(op_desc.GetAttr("dilations"));
    const std::vector<int> strides =
        boost::get<std::vector<int>>(op_desc.GetAttr("strides"));
    const std::vector<int> paddings =
        boost::get<std::vector<int>>(op_desc.GetAttr("paddings"));

    nvinfer1::DimsHW nv_ksize(filter_h, filter_w);
    nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
N
nhzlx 已提交
71
                                  weight_tensor->memory_size() / sizeof(float)};
N
nhzlx 已提交
72 73 74 75 76 77 78 79 80 81 82 83

    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT, nullptr, 0};
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Convolution, *const_cast<nvinfer1::ITensor*>(X), n_output,
        nv_ksize, weight.get(), bias.get());
    PADDLE_ENFORCE(layer != nullptr);
    layer->setStride(nv_strides);
    layer->setPadding(nv_paddings);
    layer->setDilation(nv_dilations);
    layer->setNbGroups(groups);

    auto output_name = op_desc.Output("Output").front();
84
    layer->setName(("conv2d (Output: " + output_name + ")").c_str());
N
nhzlx 已提交
85 86
    engine_->weight_map[op_desc.Input("Filter").front()] =
        std::move(weight_tensor);
87
    layer->getOutput(0)->setName(output_name.c_str());
N
nhzlx 已提交
88 89 90 91
    engine_->SetITensor(output_name, layer->getOutput(0));
    if (test_mode) {
      engine_->DeclareOutput(output_name);
    }
L
Luo Tao 已提交
92 93
  }
};
L
Luo Tao 已提交
94

L
Luo Tao 已提交
95 96 97
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle
98 99

REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);