SparseRowMatrix.h 9.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18
#ifndef PADDLE_MOBILE_INFERENCE

L
liaogang 已提交
19
#include <gflags/gflags.h>
Z
zhangjinchao01 已提交
20
#include <string.h>
Y
Yu Yang 已提交
21
#include <algorithm>
Z
zhangjinchao01 已提交
22
#include "Matrix.h"
Y
Yu Yang 已提交
23
#include "RowBuffer.h"
Z
zhangjinchao01 已提交
24
#include "paddle/utils/Util.h"
Y
Yu Yang 已提交
25

Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
namespace paddle {

/**
 * Sparse Row
 */
class SparseRowCpuMatrix : public CpuMatrix {
public:
  struct IndexDict {
    // In the following, global id means the row id in the original matrix.
    // Local id means the row id in the local storage which only contains
    // the sparse rows.
    std::vector<unsigned int> localIndices;   // local id -> global id
    std::vector<unsigned int> globalIndices;  // global id -> local id
  };
  typedef std::shared_ptr<IndexDict> IndexDictPtr;

  /// heightStore is max number of rows of the sparse matrix.
  SparseRowCpuMatrix(CpuMemHandlePtr dataHandle,
44 45 46 47
                     size_t height,
                     size_t width,
                     IndexDictPtr indexDictHandle = nullptr,
                     bool trans = false)
Z
zhangjinchao01 已提交
48 49 50
      : CpuMatrix(nullptr, height, width, trans),
        indexDictHandle_(indexDictHandle) {
    init(height, width);
51
    buf_.reset(new RowBuffer(dataHandle, width));
Z
zhangjinchao01 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
  }

  virtual ~SparseRowCpuMatrix() {}

public:
  /**
   *  Get the row buf
   *
   *  @param row row id in the original matrix
   */
  real* getRow(size_t row) {
    CHECK_NE(globalIndices_[row], kUnusedId_);
    return getLocalRow(globalIndices_[row]);
  }

  /**
   *  Get the row buf
   *
   *  @param row row id in local storage
   */
Y
Yu Yang 已提交
72
  real* getLocalRow(size_t row) { return buf_->getWithAutoGrowth(row); }
Z
zhangjinchao01 已提交
73 74

  /**
75 76
   *  reserve the storage for rows according to current size of
   * indexDictHandle.
Z
zhangjinchao01 已提交
77 78 79 80
   *
   *  This is only used when SparseRowCpuMatrix is constructed with
   *  indexDictHandle.
   */
Y
Yu Yang 已提交
81
  void reserveStore() { buf_->resize(localIndices_->size()); }
Z
zhangjinchao01 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

  // row is the row id in the original matrix
  virtual real* getRowBuf(size_t row) { return getRow(row); }

  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

  /**
   * Fill data according to row indexs added, setup indices inside.
   *
   * *src* and *size* are data and size of normal dense CpuMatrix.
   */
  virtual void copyFrom(const real* src, size_t size);
  virtual void zeroMem();

  /**
   * apply L1 to all sparse rows, should be apply after indices ready.
   */
99
  virtual void applyL1(real learningRate, real decayRate);
Z
zhangjinchao01 已提交
100 101 102 103 104 105 106 107 108

  void clearIndices() { clearRows(); }
  void zeroMemThread(size_t tid, size_t numThreads);

  /**
   *  value -= grad * learningRate,  this is gradient.
   *
   * If L1 decay set use L1, else if L2 set use L2, otherwise no decay atall.
   *
109 110
   * t0 is a int vector used by L1/L2 decay, size = height of parameter
   * matrix,
Z
zhangjinchao01 已提交
111 112 113 114 115 116 117
   * store the time that each weight row last updated.
   *
   * Time is batchId, currentTime is current batchId.
   *
   * While pass finished, caller should call this func one more time
   *  with (fini=true) to let weight decay catch up current time.
   */
118 119 120 121 122 123
  void sgdUpdate(BaseMatrix& value,
                 IVector& t0,
                 real learningRate,
                 int currentTime,
                 real decayRate,
                 bool useL1,
Z
zhangjinchao01 已提交
124 125 126 127 128 129 130 131 132 133
                 bool fini = false);

  /**
   *  merge rows in *this* to *dest* for designated thread
   *
   *  values add to *dest* matrix
   *
   *  ids occured in *this* append to *ids*
   *  filtered by  (id % numThreads == tid)
   */
134 135 136
  void addTo(BaseMatrix& dest,
             std::vector<uint32_t>& ids,
             size_t tid,
Z
zhangjinchao01 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
             size_t numThreads);

  /**
   *  the second version addTo(), *dest* is a SparseRowCpuMatrix.
   *
   *  The dest's indices should be setup already, addTo() will
   *  check src ids is exist in dest's indices.
   */
  void addTo(SparseRowCpuMatrix& dest, size_t tid, size_t numThreads);

  const IndexDictPtr& getIndexDictHandle() const { return indexDictHandle_; }

  /**
   *  check all local and global indices consistency
   */
  void checkIndices();
  /**
   *  check whether row *i* exist in indices
   */
  void checkIndex(size_t i) {
    size_t localId = globalIndices_[i];
    CHECK_LT(localId, localIndices_->size());
    CHECK_EQ((*localIndices_)[localId], i);
  }

  std::vector<unsigned int>& getLocalIndices() const {
    return indexDictHandle_->localIndices;
  }

protected:
167
  template <typename Func>
Z
zhangjinchao01 已提交
168
  void apply(Func f) {
169
    f(buf_->data(), localIndices_->size() * width_);
Z
zhangjinchao01 已提交
170 171 172 173 174 175 176 177 178 179
  }

  void init(size_t height, size_t width);

  /// clear row indices.
  void clearRows() {
    for (auto id : *localIndices_) {
      globalIndices_[id] = kUnusedId_;
    }
    localIndices_->clear();
180
    buf_->clear();
Z
zhangjinchao01 已提交
181 182 183
  }

  inline void checkStoreSize() {
Y
Yu Yang 已提交
184
    if (buf_->isAutoGrowth()) {
185
      if (buf_->getRowCount() > 0.5 * height_) {
186 187 188 189
        LOG(WARNING) << "There are more than 0.5*height ("
                     << localIndices_->size() << ") rows are used for sparse "
                     << "update, which is not efficient. Considering not use "
                     << "sparse_update.";
Z
zhangjinchao01 已提交
190
      }
Y
Yu Yang 已提交
191 192
    } else {
      CHECK_LE(localIndices_->size(), buf_->getRowCount());
Z
zhangjinchao01 已提交
193 194 195
    }
  }

196
  std::unique_ptr<RowBuffer> buf_;
Z
zhangjinchao01 已提交
197 198 199 200 201 202 203 204 205 206 207 208
  IndexDictPtr indexDictHandle_;
  std::vector<unsigned int>* localIndices_;  // =&indexDictHandle_->localIndices
  unsigned int* globalIndices_;  // =indexDictHandle_->globalIndices.data();
  static const unsigned int kUnusedId_;
};

class SyncThreadPool;

/// For prefetching parameters from remote Parameter server
class SparsePrefetchRowCpuMatrix : public SparseRowCpuMatrix {
public:
  SparsePrefetchRowCpuMatrix(CpuMemHandlePtr dataHandle,
209 210
                             size_t height,
                             size_t width,
Z
zhangjinchao01 已提交
211
                             IndexDictPtr indexDictHandle = nullptr,
212 213
                             SyncThreadPool* pool = nullptr,
                             bool trans = false)
Z
zhangjinchao01 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
      : SparseRowCpuMatrix(dataHandle, height, width, indexDictHandle, trans),
        pool_(pool) {}

  /**
   * Extract feature ids from *input*, to fill row indexs.
   *
   * *input* must be sparse matrix.
   *
   * Can call many times before setup.
   */
  void addRows(MatrixPtr input);
  void addRows(IVectorPtr ids);

  /**
   * setup global indices of SparseRowMatrix after finish add rows.
   */
  void setupIndices();

protected:
  void addRows(const unsigned int* ids, size_t len);
  SyncThreadPool* pool_;
};

class SparseAutoGrowRowCpuMatrix : public SparseRowCpuMatrix {
public:
239 240
  SparseAutoGrowRowCpuMatrix(size_t height,
                             size_t width,
Z
zhangjinchao01 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
                             IndexDictPtr indexDictHandle = nullptr,
                             bool trans = false)
      : SparseRowCpuMatrix(nullptr, height, width, indexDictHandle, trans) {}

  real* getRow(size_t row) {
    auto id = globalIndices_[row];
    if (id == kUnusedId_) {
      id = globalIndices_[row] = localIndices_->size();
      localIndices_->push_back(row);
      checkStoreSize();
    }
    return getLocalRow(id);
  }

  virtual real* getRowBuf(size_t row) { return getRow(row); }

  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);
};

class CacheRowCpuMatrix : public SparseAutoGrowRowCpuMatrix {
public:
262 263 264 265
  CacheRowCpuMatrix(size_t height,
                    size_t width,
                    IndexDictPtr indexDictHandle = nullptr,
                    bool trans = false)
Z
zhangjinchao01 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279
      : SparseAutoGrowRowCpuMatrix(height, width, indexDictHandle, trans),
        sourceData_(nullptr) {}

  void setSourceData(CpuVectorPtr sourceVec) {
    sourceDataVec_ = sourceVec;
    sourceData_ = sourceVec->getData();
  }

  real* getRow(size_t row) {
    auto id = globalIndices_[row];
    if (id == kUnusedId_) {
      id = globalIndices_[row] = localIndices_->size();
      localIndices_->push_back(row);
      checkStoreSize();
280 281
      memcpy(
          getLocalRow(id), sourceData_ + width_ * row, sizeof(float) * width_);
Z
zhangjinchao01 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    }
    return getLocalRow(id);
  }

  virtual real* getRowBuf(size_t row) { return getRow(row); }

  virtual void mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB, real scaleT);

public:
  CpuVectorPtr sourceDataVec_;
  real* sourceData_;
};

/**
 * Sparse Row Ids Matrix.
 *
 * mostly same as CpuMatrix, but maintain sparse row ids occured,
 * ids are hashed by worker thread id.
 */
class SparseRowIdsCpuMatrix : public CpuMatrix {
public:
303 304 305
  SparseRowIdsCpuMatrix(CpuMemHandlePtr dataHandle,
                        size_t height,
                        size_t width,
Z
zhangjinchao01 已提交
306 307 308 309 310 311 312 313 314 315 316 317
                        bool trans = false)
      : CpuMatrix(dataHandle, height, width, trans) {}

  void setNumOfThreads(size_t numOfThreads) { idsArray_.resize(numOfThreads); }

  std::vector<uint32_t>& getIds(size_t threadId) { return idsArray_[threadId]; }

private:
  std::vector<std::vector<uint32_t>> idsArray_;
};

}  // namespace paddle
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

#else
namespace paddle {

class SparseRowCpuMatrix : public CpuMatrix {
public:
  void reserveStore() {}
  void clearIndices() {}
};

class SparsePrefetchRowCpuMatrix : public SparseRowCpuMatrix {
public:
  void setupIndices() {}
  void addRows(MatrixPtr input) {}
  void addRows(IVectorPtr ids) {}
};

class SparseAutoGrowRowCpuMatrix : public SparseRowCpuMatrix {};
class CacheRowCpuMatrix : public SparseAutoGrowRowCpuMatrix {};
class SparseRowIdsCpuMatrix : public CpuMatrix {};

}  // namespace paddle

#endif