tensor_py.h 38.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

L
Luo Tao 已提交
17
#include <Python.h>
W
wopeizl 已提交
18 19
#include <algorithm>
#include <memory>
Q
qijun 已提交
20
#include <string>
C
chengduoZH 已提交
21
#include <tuple>
22
#include <utility>
C
chengduoZH 已提交
23
#include <vector>
24
#include "paddle/fluid/framework/data_type.h"
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
27
#include "paddle/fluid/operators/eigen/eigen_function.h"
W
wopeizl 已提交
28 29
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
30
#include "paddle/fluid/platform/bfloat16.h"
31
#include "paddle/fluid/platform/device/device_wrapper.h"
32
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
33 34
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
35
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/platform/device_context.h"
37
#include "paddle/fluid/platform/float16.h"
38
#include "paddle/fluid/platform/profiler/event_tracing.h"
Q
qijun 已提交
39 40
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
41

W
wopeizl 已提交
42 43
namespace py = pybind11;

44 45 46 47 48 49 50
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
51
constexpr int NPY_UINT16_ = 4;
52 53
constexpr int NPY_COMPLEX64 = 14;
constexpr int NPY_COMPLEX128 = 15;
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
70
  static constexpr auto name = _("float16");
71 72
};

73 74 75 76 77 78 79 80 81 82 83 84 85 86
// Note: Since bfloat16 is not a builtin type in C++ and in numpy,
// we register paddle::platform::bfloat16 as numpy.uint16.
template <>
struct npy_format_descriptor<paddle::platform::bfloat16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_UINT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "H" represents UINT16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "H";
  }
87
  static constexpr auto name = _("bfloat16");
88 89
};

90
// we register paddle::platform::complex<float> as numpy.complex64.
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
template <>
struct npy_format_descriptor<paddle::platform::complex<float>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX64);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "F" represents complex64.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "F";
  }
  static constexpr auto name = _("complext64");
};

template <>
struct npy_format_descriptor<paddle::platform::complex<double>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX128);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "D" represents complex128.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "D";
  }
  static constexpr auto name = _("complext128");
};

127 128 129
}  // namespace detail
}  // namespace pybind11

130
namespace paddle {
131
namespace pybind {
132

133 134
namespace details {

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
template <typename T>
class PYBIND11_HIDDEN NumpyAllocation : public memory::Allocation {
 public:
  explicit NumpyAllocation(const py::array &arr)
      : Allocation(const_cast<void *>(arr.data()), sizeof(T) * (arr.size()),
                   paddle::platform::CPUPlace()),
        arr_(arr.ptr()) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~NumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject *arr_;
};

160 161 162 163 164 165 166 167 168 169 170 171
template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
172
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::bfloat16);
173 174
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<float>);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<double>);
175 176 177 178
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
L
Leo Chen 已提交
179
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int16_t);
180 181
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);
L
Leo Chen 已提交
182
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
183 184 185 186 187 188 189

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
190 191 192
    } else if (std::is_same<T, platform::bfloat16>::value) {                \
      /* NumPy character code of uint16 due to no support for bfloat16 */   \
      return "H";                                                           \
193 194 195 196
    } else if (std::is_same<T, platform::complex<float>>::value) {          \
      return "F";                                                           \
    } else if (std::is_same<T, platform::complex<double>>::value) {         \
      return "D";                                                           \
197 198
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
199 200 201 202 203
      PADDLE_ENFORCE_EQ(                                                    \
          kIsValidDType, true,                                              \
          platform::errors::Unimplemented(                                  \
              "This type [%s] of tensor cannot be expose to Python",        \
              typeid(T).name()));                                           \
204 205 206 207 208 209
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
210 211
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", framework::DataTypeToString(type)));
212 213 214 215
}

}  // namespace details

216
template <typename T>
217
T TensorGetElement(const framework::Tensor &self, size_t offset) {
218 219 220
  PADDLE_ENFORCE_LT(offset, self.numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
221

Q
qingqing01 已提交
222
  T b = static_cast<T>(0);
223
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
224
    b = self.data<T>()[offset];
225 226 227
  } else if (platform::is_xpu_place(self.place())) {
#ifdef PADDLE_WITH_XPU
    const T *a = self.data<T>();
228
    auto p = self.place();
229 230 231
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self.place())) {
232
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
233
    const T *a = self.data<T>();
234
    auto p = self.place();
Q
qingqing01 已提交
235 236
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
237 238 239 240
#endif
  } else if (platform::is_mlu_place(self.place())) {
#ifdef PADDLE_WITH_MLU
    const T *a = self.data<T>();
241
    auto p = self.place();
242 243
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
244 245 246 247
#endif
  } else if (platform::is_npu_place(self.place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
    const T *a = self.data<T>();
248
    auto p = self.place();
249 250
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
251 252 253 254 255 256 257
#endif
  } else if (platform::is_custom_place(self.place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    const T *a = self.data<T>();
    auto p = self.place();
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
Q
qingqing01 已提交
258
#endif
259
  }
260 261
  VLOG(10) << "TensorGetElement, place: " << self.place()
           << ", offset: " << offset << ", element: " << b;
Q
qingqing01 已提交
262
  return b;
263 264 265
}

template <typename T>
266
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
267 268 269
  PADDLE_ENFORCE_LT(offset, self->numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
270 271
  VLOG(10) << "TensorSetElement, place: " << self->place()
           << ", offset: " << offset << ", element: " << elem;
Q
qingqing01 已提交
272
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
273
    self->mutable_data<T>(self->place())[offset] = elem;
274 275
  } else if (platform::is_xpu_place(self->place())) {
#ifdef PADDLE_WITH_XPU
276
    auto p = self->place();
277 278 279 280
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T));
#endif
  } else if (platform::is_gpu_place(self->place())) {
281
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
282
    auto p = self->place();
Q
qingqing01 已提交
283 284 285
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
286 287 288
#endif
  } else if (platform::is_mlu_place(self->place())) {
#ifdef PADDLE_WITH_MLU
289
    auto p = self->place();
290 291 292
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
293 294 295
#endif
  } else if (platform::is_npu_place(self->place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
296
    auto p = self->place();
297 298 299
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
300 301 302 303 304 305 306
#endif
  } else if (platform::is_custom_place(self->place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    auto p = self->place();
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
Q
qingqing01 已提交
307
#endif
308
  }
309 310
}

311 312 313
template <typename T, typename P>
void SetTensorFromPyArrayT(
    framework::Tensor *self,
314
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
315
    const P &place, bool zero_copy) {
316 317 318 319 320
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
321
  self->Resize(phi::make_ddim(dims));
322 323

  if (paddle::platform::is_cpu_place(place)) {
324 325 326
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
327
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
328 329 330 331
    } else {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
    }
332 333
  } else if (paddle::platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
W
WangXi 已提交
334 335 336
    // NOTE(wangxi): When copying data to the accelerator card,
    // we need set_device(dev_id) first.
    platform::Place tmp_place = place;
337
    platform::XPUDeviceGuard guard(tmp_place.device);
338
    auto dst = self->mutable_data<T>(place);
339
    memory::Copy(tmp_place, static_cast<void *>(dst), platform::CPUPlace(),
T
taixiurong 已提交
340
                 static_cast<const void *>(array.data()), array.nbytes());
341 342 343 344
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
J
jianghaicheng 已提交
345 346 347 348 349 350
#endif
  } else if (paddle::platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
351
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
J
jianghaicheng 已提交
352
    } else {
353 354 355 356 357 358 359 360
      // IPU does not store Tensor data, Tensor will be created on CPU
      if (!self->initialized()) {
        auto dst = self->mutable_data<T>(place);
        std::memcpy(dst, array.data(), array.nbytes());
      } else {
        auto dst = self->mutable_data<T>(self->place());
        std::memcpy(dst, array.data(), array.nbytes());
      }
J
jianghaicheng 已提交
361 362 363 364 365
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use IPUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with IPU support."));
366 367 368 369
#endif
  } else if (paddle::platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    platform::Place tmp_place = place;
370
    platform::NPUDeviceGuard guard(tmp_place.device);
371 372 373 374 375 376 377 378 379 380
    auto dst = self->mutable_data<T>(place);
    platform::NPUMemcpySync(dst, array.data(), array.nbytes(),
                            ACL_MEMCPY_HOST_TO_DEVICE);
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with NPU support."));
381 382 383 384
#endif
  } else if (paddle::platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    platform::Place tmp_place = place;
385
    platform::MLUDeviceGuard guard(tmp_place.device);
386 387 388 389 390 391
    auto dst = self->mutable_data<T>(place);
    paddle::platform::MLUMemcpyH2DSync(dst, array.data(), array.nbytes());
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
392 393 394 395
#endif
  } else if (paddle::platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    platform::Place tmp_place = place;
396
    phi::DeviceGuard guard(tmp_place);
397 398
    auto dst = self->mutable_data<T>(place);

399
    phi::DeviceManager::GetDeviceWithPlace(tmp_place)->MemoryCopyH2D(
400 401 402 403 404 405 406 407 408 409
        reinterpret_cast<void *>(dst),
        const_cast<void *>(reinterpret_cast<const void *>(array.data())),
        array.nbytes());
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomDevice in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with CustomDevice support."));
410
#endif
411
  } else {
412
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
413
    if (paddle::platform::is_gpu_place(place)) {
W
WangXi 已提交
414 415
      // NOTE(wangxi): When copying data to the accelerator card,
      // we need set_device(dev_id) first.
416
      platform::CUDADeviceGuard guard(place.device);
417
      auto dst = self->mutable_data<T>(place);
418 419 420 421
#ifdef PADDLE_WITH_HIP
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      hipMemcpyHostToDevice);
#else
422 423
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      cudaMemcpyHostToDevice);
424
#endif
425

426 427 428
    } else if (paddle::platform::is_cuda_pinned_place(place)) {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
429
    } else {
430 431 432
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible place type: Tensor.set() supports "
          "CPUPlace, CUDAPlace "
433
          "and CUDAPinnedPlace, but got %s!",
434
          place));
435 436
    }
#else
437
    PADDLE_THROW(platform::errors::PermissionDenied(
438
        "Cannot use CUDAPlace or CUDAPinnedPlace in CPU only version, "
439
        "Please recompile or reinstall Paddle with CUDA support."));
440 441 442 443 444
#endif
  }
}

template <typename P>
445
void SetTensorFromPyArray(framework::Tensor *self, const py::object &obj,
446
                          const P &place, bool zero_copy) {
447
  auto array = obj.cast<py::array>();
448
  if (py::isinstance<py::array_t<float>>(array)) {
449
    SetTensorFromPyArrayT<float, P>(self, array, place, zero_copy);
450
  } else if (py::isinstance<py::array_t<int>>(array)) {
451
    SetTensorFromPyArrayT<int, P>(self, array, place, zero_copy);
452
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
453
    SetTensorFromPyArrayT<int64_t, P>(self, array, place, zero_copy);
454
  } else if (py::isinstance<py::array_t<double>>(array)) {
455
    SetTensorFromPyArrayT<double, P>(self, array, place, zero_copy);
456
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
457
    SetTensorFromPyArrayT<int8_t, P>(self, array, place, zero_copy);
L
Leo Chen 已提交
458 459
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetTensorFromPyArrayT<int16_t, P>(self, array, place, zero_copy);
460
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
461
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place, zero_copy);
462
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
463 464
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place,
                                                        zero_copy);
465 466 467 468 469 470 471 472
  } else if (py::isinstance<py::array_t<paddle::platform::complex<float>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<float>, P>(
        self, array, place, zero_copy);
  } else if (py::isinstance<py::array_t<paddle::platform::complex<double>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<double>, P>(
        self, array, place, zero_copy);
473
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
474 475 476 477
    // since there is still no support for bfloat16 in NumPy,
    // uint16 is used for casting bfloat16
    SetTensorFromPyArrayT<paddle::platform::bfloat16, P>(self, array, place,
                                                         zero_copy);
478
  } else if (py::isinstance<py::array_t<bool>>(array)) {
479
    SetTensorFromPyArrayT<bool, P>(self, array, place, zero_copy);
480
  } else {
481 482
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning,
483
    PADDLE_THROW(platform::errors::InvalidArgument(
484 485 486 487
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64, uint8 or uint16, "
        "please check your input or input array data type."));
488 489 490
  }
}

S
Siming Dai 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503
template <typename T>
void SetUVATensorFromPyArray(
    const std::shared_ptr<paddle::imperative::VarBase> &self,
    const py::array_t<T> &array, int device_id) {
#if defined(PADDLE_WITH_CUDA)
  auto *self_tensor = self->MutableVar()->GetMutable<framework::LoDTensor>();
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  int64_t numel = 1;
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.emplace_back(static_cast<int>(array.shape()[i]));
    numel *= static_cast<int>(array.shape()[i]);
  }
504
  self_tensor->Resize(phi::make_ddim(dims));
S
Siming Dai 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

  auto data_type = framework::ToDataType(std::type_index(typeid(T)));
  const auto &need_allocate_size = numel * framework::SizeOfType(data_type);
  T *data_ptr;
  cudaHostAlloc(reinterpret_cast<void **>(&data_ptr), need_allocate_size,
                cudaHostAllocWriteCombined | cudaHostAllocMapped);
  std::memcpy(data_ptr, array.data(), array.nbytes());

  void *cuda_device_pointer = nullptr;
  cudaHostGetDevicePointer(reinterpret_cast<void **>(&cuda_device_pointer),
                           reinterpret_cast<void *>(data_ptr), 0);
  std::shared_ptr<memory::allocation::Allocation> holder =
      std::make_shared<memory::allocation::Allocation>(
          cuda_device_pointer, need_allocate_size,
          platform::CUDAPlace(device_id));
520
  self_tensor->ResetHolderWithType(holder,
521
                                   framework::TransToPhiDataType(data_type));
S
Siming Dai 已提交
522 523 524
#endif
}

W
wopeizl 已提交
525 526 527 528 529 530 531 532 533
template <typename T, size_t D>
void _sliceCompute(const framework::Tensor *in, framework::Tensor *out,
                   const platform::CPUDeviceContext &ctx,
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

534 535
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
W
wopeizl 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
555 556
  operators::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
      eigen_place, out_t, in_t, offsets, extents);
W
wopeizl 已提交
557 558 559 560 561 562 563 564 565
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
                    const platform::CPUDeviceContext &ctx, int64_t axis) {
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
566 567
      auto in_stride = phi::stride_numel(in.dims());
      auto out_stride = phi::stride_numel(out->dims());
W
wopeizl 已提交
568 569 570 571 572 573 574 575 576 577 578 579
      paddle::operators::StridedNumelCopyWithAxis<T>(
          ctx, axis, out->data<T>() + output_offset, out_stride, in.data<T>(),
          in_stride, in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

L
Leo Chen 已提交
580 581 582
inline void _getSliceinfo(const framework::Tensor &self, py::object obj,
                          const int64_t dim, int64_t *pstart, int64_t *pstop,
                          int64_t *pstep, int64_t *pslicelength) {
W
wopeizl 已提交
583 584 585 586 587
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
Z
zyfncg 已提交
588 589 590 591 592 593
  PADDLE_ENFORCE(
      0 <= dim && dim < srcDDim.size(),
      platform::errors::OutOfRange("The dim %d of slice is out of bounds, it "
                                   "shound be in the range of [0, %d).",
                                   dim, srcDDim.size()));

W
wopeizl 已提交
594 595 596 597
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
Z
zyfncg 已提交
598 599 600 601
      PADDLE_THROW(platform::errors::OutOfRange(
          "Slice on dim: %d is error, please check the validity of tensor "
          "dims or slice item.",
          dim));
W
wopeizl 已提交
602 603 604 605 606 607 608
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
Z
zyfncg 已提交
609 610 611 612 613
    PADDLE_ENFORCE(
        std::abs(start) < srcDDim[dim],
        platform::errors::OutOfRange("The start %d of slice is out of bounds, "
                                     "it shound be in the range of (%d, %d).",
                                     start, -srcDDim[dim], srcDDim[dim]));
W
wopeizl 已提交
614 615 616 617 618
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
Z
zyfncg 已提交
619 620 621
    PADDLE_THROW(
        platform::errors::OutOfRange("Index object error, the index object for "
                                     "slice only supports slice(::) and int."));
W
wopeizl 已提交
622 623 624 625 626 627 628 629 630
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
631
    output->mutable_data(place, self.dtype());
632 633
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
634
    output->mutable_data(place, self.dtype());
635 636 637
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
638
    output->mutable_data(place, self.dtype());
639
#endif
W
wopeizl 已提交
640
  } else {
641
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
wopeizl 已提交
642
    if (platform::is_cuda_pinned_place(place)) {
643
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
644
    } else if ((platform::is_gpu_place(place))) {
645
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    }
#endif
  }
  return output;
}

template <typename T>
void _sliceDapper(const framework::Tensor *in, framework::Tensor *out,
                  const platform::CPUDeviceContext &ctx,
                  const std::vector<int> &axes, const std::vector<int> &starts,
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
686 687
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The dim size should be 1 to 9, current is %d", size));
W
wopeizl 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
                                        const platform::CPUDeviceContext &ctx,
                                        py::object obj, int dim, int64_t start,
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
                                          py::object obj, int dim) {
  platform::CPUDeviceContext ctx;
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
                                       py::object obj, int dim) {
731
  auto src_type = framework::TransToProtoVarType(self.dtype());
W
wopeizl 已提交
732 733 734
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
735 736
    case framework::proto::VarType::BF16:
      return _sliceAndConcat<paddle::platform::bfloat16>(self, obj, dim);
737
    case framework::proto::VarType::COMPLEX64:
738
      return _sliceAndConcat<paddle::platform::complex<float>>(self, obj, dim);
739
    case framework::proto::VarType::COMPLEX128:
740
      return _sliceAndConcat<paddle::platform::complex<double>>(self, obj, dim);
W
wopeizl 已提交
741 742 743 744
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
L
Leo Chen 已提交
745 746 747 748
    case framework::proto::VarType::INT8:
      return _sliceAndConcat<int8_t>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<int16_t>(self, obj, dim);
W
wopeizl 已提交
749 750 751 752 753 754 755
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
L
Leo Chen 已提交
756
      return _sliceAndConcat<uint8_t>(self, obj, dim);
W
wopeizl 已提交
757
    default:
758 759 760
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Not support tensor type: %s",
          framework::DataTypeToString(src_type)));
W
wopeizl 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

800 801
inline py::array TensorToPyArray(const framework::Tensor &tensor,
                                 bool need_deep_copy = false) {
Q
qingqing01 已提交
802 803 804
  if (!tensor.IsInitialized()) {
    return py::array();
  }
805
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
806
  bool is_xpu_tensor = platform::is_xpu_place(tensor.place());
807
  bool is_npu_tensor = platform::is_npu_place(tensor.place());
808
  bool is_mlu_tensor = platform::is_mlu_place(tensor.place());
809
  bool is_custom_device_tensor = platform::is_custom_place(tensor.place());
810
  const auto &tensor_dims = tensor.dims();
811
  auto tensor_dtype = framework::TransToProtoVarType(tensor.dtype());
812 813 814 815 816 817 818
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
819
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
820 821 822 823
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

824
  const void *tensor_buf_ptr = tensor.data();
825

826 827
  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(
      framework::TransToProtoVarType(tensor.dtype()));
828

829 830
  if (!is_gpu_tensor && !is_xpu_tensor && !is_npu_tensor && !is_mlu_tensor &&
      !is_custom_device_tensor) {
831
    if (!need_deep_copy) {
832 833 834
      auto base = py::cast(std::move(tensor));
      return py::array(py::dtype(py_dtype_str.c_str()), py_dims, py_strides,
                       const_cast<void *>(tensor_buf_ptr), base);
835 836
    } else {
      py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
837 838 839 840 841 842 843 844 845 846
      PADDLE_ENFORCE_EQ(
          py_arr.writeable(), true,
          platform::errors::InvalidArgument(
              "PyArray is not writable, in which case memory leak "
              "or double free would occur"));
      PADDLE_ENFORCE_EQ(
          py_arr.owndata(), true,
          platform::errors::InvalidArgument(
              "PyArray does not own data, in which case  memory leak "
              "or double free would occur"));
847 848 849 850 851 852
      platform::CPUPlace place;
      size_t copy_bytes = sizeof_dtype * numel;
      paddle::memory::Copy(place, py_arr.mutable_data(), place, tensor_buf_ptr,
                           copy_bytes);
      return py_arr;
    }
853 854 855 856 857 858 859 860 861 862 863 864 865 866
  } else if (is_xpu_tensor) {
#ifdef PADDLE_WITH_XPU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
867
    auto p = tensor.place();
868 869 870 871 872 873 874 875 876
    paddle::memory::Copy(platform::CPUPlace(), py_arr.mutable_data(), p,
                         tensor_buf_ptr, copy_bytes);
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
#endif
  } else if (is_gpu_tensor) {
877
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
878 879 880 881 882 883 884 885 886 887 888 889
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
890
    auto p = tensor.place();
891 892
    paddle::memory::Copy(platform::CPUPlace(), py_arr.mutable_data(), p,
                         tensor_buf_ptr, copy_bytes, nullptr);
893
    return py_arr;
894
#else
895 896 897
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CUDAPlace in CPU only version, "
        "Please recompile or reinstall Paddle with CUDA support."));
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
#endif
  } else if (is_npu_tensor) {
#ifdef PADDLE_WITH_ASCEND_CL
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
913
    auto p = tensor.place();
914 915 916 917 918 919 920 921 922 923 924 925
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
        platform::CPUPlace(), py_arr.mutable_data(), p, tensor_buf_ptr,
        copy_bytes,
        reinterpret_cast<const platform::NPUDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version, "
        "Please recompile or reinstall Paddle with NPU support."));
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
#endif
  } else if (is_mlu_tensor) {
#ifdef PADDLE_WITH_MLU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
941
    auto p = tensor.place();
942 943 944 945 946 947 948
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
        platform::CPUPlace(), py_arr.mutable_data(), p, tensor_buf_ptr,
        copy_bytes,
        reinterpret_cast<const platform::MLUDeviceContext &>(ctx).stream());
    ctx.Wait();
949 950 951 952 953
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
#endif
  } else if (is_custom_device_tensor) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
    PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
        py_arr.owndata(), true,
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
        platform::CPUPlace(), py_arr.mutable_data(), tensor.place(),
        tensor_buf_ptr, copy_bytes,
        reinterpret_cast<const platform::CustomDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with CustomPlace "
        "support."));
982
#endif
983 984 985
  }
  PADDLE_THROW(platform::errors::Unimplemented("Place is not supported"));
  return py::array();
986 987
}

988 989
}  // namespace pybind
}  // namespace paddle