crop_op.cc 6.0 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/crop_op.h"
W
wanghaoshuang 已提交
16
#include <boost/lexical_cast.hpp>
W
wanghaoshuang 已提交
17 18 19 20 21

namespace paddle {
namespace operators {

using framework::Tensor;
22
using framework::LoDTensor;
W
wanghaoshuang 已提交
23 24 25 26 27 28 29

class CropOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
30 31
    auto x_dim = ctx.Input<LoDTensor>("X")->dims();
    auto Y = ctx.Input<LoDTensor>("Y");
W
wanghaoshuang 已提交
32
    if (Y == nullptr) {
33
      auto shape = Attr<std::vector<int>>("shape");
W
wanghaoshuang 已提交
34
      PADDLE_ENFORCE_EQ(
35
          int64_t(shape.size()), x_dim.size(),
W
wanghaoshuang 已提交
36
          "Shape size should be equal to dimention size of input tensor.");
W
wanghaoshuang 已提交
37
      std::vector<int64_t> tensor_shape(shape.size());
38
      for (size_t i = 0; i < shape.size(); ++i) {
W
wanghaoshuang 已提交
39 40
        tensor_shape[i] = (int64_t)shape[i];
      }
41
      ctx.Output<LoDTensor>("Out")->Resize(framework::make_ddim(tensor_shape));
W
wanghaoshuang 已提交
42
    } else {
43
      ctx.Output<LoDTensor>("Out")->Resize(Y->dims());
W
wanghaoshuang 已提交
44 45 46 47 48 49 50 51
    }
  }
};

class CropOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  CropOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
52 53 54 55 56 57 58 59 60
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddInput("Y",
             "The input used as reference for cropping"
             " with the same dimension as X. ");
    AddOutput("Out",
              "The output of crop op "
              "with the same dimension as X.");
W
wanghaoshuang 已提交
61 62
    AddComment(R"DOC(
Crop Operator.
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
Crop input into output, as specified by offsets and shape.

There are two ways to set shape: 
1. referenc input: crop input X as shape as reference input.
                    The dimension of reference input should 
                    be as same as input X.
2. shape list: crop input X by shape described by a list<int>.
               The size of shape list should be as same as 
               dimension size of  input X.

The input should be a k-D tensor(k > 0 and k < 7). As an example:

Given:

X = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]

and 

offsets = [0, 1]

and
 
shape = [2, 2]

then we get 

Out = [[1, 2],
   [3, 4]]

W
wanghaoshuang 已提交
94
)DOC");
95 96 97 98 99 100 101
    AddAttr<std::vector<int>>("offsets",
                              "A list<int> describing offsets to be cropped."
                              "The size of offsets list should be as same as "
                              "dimension size of  input X.");
    AddAttr<std::vector<int>>("shape",
                              "A list<int> describing the shape of output."
                              "The size of shape list should be as same as "
102 103
                              "dimension size of  input X.")
        .SetDefault(std::vector<int>());
W
wanghaoshuang 已提交
104 105 106 107 108 109 110 111 112 113 114 115
  }
};

class CropOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(const framework::InferShapeContext &ctx) const override {
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null");
116 117
    auto x_dims = ctx.Input<LoDTensor>("X")->dims();
    auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
118 119 120
    if (x_grad != nullptr) {
      x_grad->Resize(x_dims);
    }
W
wanghaoshuang 已提交
121 122 123
  }
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
int64_t transIndex(std::vector<int64_t> out_shape, std::vector<int64_t> x_shape,
                   std::vector<std::pair<int, int>> crop_rules, size_t index) {
  int64_t dim_size = out_shape.size();
  std::vector<int64_t> pos(dim_size);

  for (int64_t i = out_shape.size() - 1; i >= 0; --i) {
    pos[i] = (index % out_shape[i]) + crop_rules[i].first;
    index = index / out_shape[i];
  }

  size_t result = pos[0];
  for (size_t i = 1; i < x_shape.size(); ++i) {
    result = result * x_shape[i] + pos[i];
  }
  return result;
}

141 142 143 144
template <typename T>
class CropCPUKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
145 146
    auto *x = context.Input<LoDTensor>("X");
    auto *out = context.Output<LoDTensor>("Out");
147
    auto x_data = x->data<T>();
148
    T *out_data = out->mutable_data<T>(context.GetPlace());
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    auto x_dims = x->dims();
    auto out_dims = out->dims();
    int64_t out_count = framework::product(out_dims);
    std::vector<int64_t> x_shape = framework::vectorize(x_dims);
    std::vector<int64_t> out_shape = framework::vectorize(out_dims);

    auto offsets = context.op().Attr<std::vector<int>>("offsets");
    PADDLE_ENFORCE_EQ(
        x_dims.size(), offsets.size(),
        "Offsets size should be equal to dimension size of input tensor.");

    std::vector<std::pair<int, int>> crop_rules(x_dims.size());
    for (size_t i = 0; i < crop_rules.size(); ++i) {
      crop_rules[i].first = offsets[i];
      crop_rules[i].second = x_dims[i] - out_dims[i] - offsets[i];
    }

    for (int64_t i = 0; i < out_count; ++i) {
      out_data[i] = x_data[transIndex(out_shape, x_shape, crop_rules, i)];
    }
  }
};

W
wanghaoshuang 已提交
172 173 174 175 176
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(crop, ops::CropOp, ops::CropOpMaker, crop_grad, ops::CropOpGrad);
177
REGISTER_OP_CPU_KERNEL(crop, ops::CropCPUKernel<float>);
W
wanghaoshuang 已提交
178 179
REGISTER_OP_CPU_KERNEL(crop_grad,
                       ops::CropGradKernel<paddle::platform::CPUPlace, float>);