dist_model.cc 21.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <glog/logging.h>
16
#include <chrono>  // NOLINT
17 18

#include "paddle/fluid/distributed/fleet_executor/dist_model.h"
19 20
#include "paddle/fluid/distributed/fleet_executor/fleet_executor.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
21
#include "paddle/fluid/framework/block_desc.h"
22
#include "paddle/fluid/framework/feed_fetch_method.h"
23
#include "paddle/fluid/framework/naive_executor.h"
24
#include "paddle/fluid/framework/op_proto_maker.h"
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"

namespace paddle {
namespace distributed {

namespace {
bool IsPersistable(const framework::VarDesc *var) {
  if (var->Persistable() &&
      var->GetType() != framework::proto::VarType::FEED_MINIBATCH &&
      var->GetType() != framework::proto::VarType::FETCH_LIST &&
      var->GetType() != framework::proto::VarType::RAW) {
    return true;
  }
  return false;
}
42 43 44 45 46

bool LoadDataFromDistModelTensor(const DistModelTensor &input_data,
                                 framework::LoDTensor *input_tensor,
                                 const platform::Place &place) {
  VLOG(3) << "Loading data from DistModelTensor for " << input_data.name;
47
  framework::DDim dims = phi::make_ddim(input_data.shape);
48 49 50 51 52 53 54
  void *input_tensor_ptr;
  if (input_data.dtype == DistModelDataType::INT64) {
    input_tensor_ptr = input_tensor->mutable_data<int64_t>(dims, place);
  } else if (input_data.dtype == DistModelDataType::FLOAT32) {
    input_tensor_ptr = input_tensor->mutable_data<float>(dims, place);
  } else if (input_data.dtype == DistModelDataType::INT32) {
    input_tensor_ptr = input_tensor->mutable_data<int32_t>(dims, place);
55 56
  } else if (input_data.dtype == DistModelDataType::FLOAT16) {
    input_tensor_ptr = input_tensor->mutable_data<float16>(dims, place);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  } else {
    LOG(ERROR) << "unsupported feed type " << input_data.dtype;
    return false;
  }

  PADDLE_ENFORCE_NOT_NULL(
      input_tensor_ptr,
      paddle::platform::errors::Fatal(
          "LoDTensor creation failed. DistModel loaded data failed."));
  PADDLE_ENFORCE_NOT_NULL(input_data.data.data(),
                          paddle::platform::errors::InvalidArgument(
                              "DistModelTensor contains no data."));

  if (platform::is_cpu_place(place)) {
    VLOG(3) << "Loading data for CPU.";
    std::memcpy(static_cast<void *>(input_tensor_ptr), input_data.data.data(),
                input_data.data.length());
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Loading data for GPU.";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx =
        dynamic_cast<const platform::CUDADeviceContext *>(pool.Get(place));
    auto gpu_place = place;
    memory::Copy(gpu_place, static_cast<void *>(input_tensor_ptr),
                 platform::CPUPlace(), input_data.data.data(),
                 input_data.data.length(), dev_ctx->stream());
#else
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "Paddle wasn't compiled with CUDA, but place is GPU."));
#endif
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "DistModel only supports CPU and GPU."));
  }

  framework::LoD dst_lod;
  for (auto &src_lod : input_data.lod) {
    dst_lod.emplace_back(src_lod);
  }
  input_tensor->set_lod(dst_lod);
  return true;
}

std::string DistModelDTypeToString(DistModelDataType dtype) {
  switch (dtype) {
    case DistModelDataType::FLOAT32:
      return "float32";
    case DistModelDataType::FLOAT16:
      return "float16";
    case DistModelDataType::INT64:
      return "int64";
    case DistModelDataType::INT32:
      return "int32";
    case DistModelDataType::INT8:
      return "int8";
  }
  return "NOT SUPPORT DTYPE";
}

class DistModelTimer {
 public:
  void tic() { tic_time = std::chrono::high_resolution_clock::now(); }
  double toc() {
    std::chrono::high_resolution_clock::time_point toc_time =
        std::chrono::high_resolution_clock::now();
    std::chrono::duration<double> time_elapse =
        std::chrono::duration_cast<std::chrono::duration<double>>(toc_time -
                                                                  tic_time);
    double time_elapse_in_ms =
        static_cast<double>(time_elapse.count()) * 1000.0;
    return time_elapse_in_ms;
  }

 private:
  std::chrono::high_resolution_clock::time_point tic_time;
};

135 136 137
}  // namespace

bool DistModel::Init() {
138
  carrier_id_ = "inference";
139 140 141 142 143 144 145 146 147 148
  bool init_method = (!config_.model_dir.empty() || config_.program_desc);
  PADDLE_ENFORCE_EQ(init_method, true,
                    platform::errors::InvalidArgument(
                        "One of model dir or program desc must be provided to "
                        "dist model inference."));
  if (config_.program_desc) {
    PADDLE_ENFORCE_NOT_NULL(
        config_.scope, platform::errors::InvalidArgument(
                           "Scope must be provided to dist model inference if "
                           "program desc has been provided."));
149
  }
150
  if (!PreparePlace()) {
151 152
    return false;
  }
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  if (!config_.program_desc) {
    if (config_.scope) {
      LOG(WARNING) << "The provided scope will be ignored if model dir has "
                      "also been provided.";
    }
    if (!PrepareScope()) {
      return false;
    }
    if (!PrepareProgram()) {
      return false;
    }
  } else {
    program_.reset(config_.program_desc);
    scope_.reset(config_.scope);
  }
168 169 170
  if (!PrepareFeedAndFetch()) {
    return false;
  }
Y
Yuang Liu 已提交
171
  if (config_.nranks > 1 && !CommInit()) {
172 173
    return false;
  }
174 175 176
  if (!PrepareFleetExe()) {
    return false;
  }
177 178 179
  return true;
}

180 181 182 183 184 185 186 187 188 189 190 191
bool DistModel::PreparePlace() {
  if (config_.place == "GPU") {
    place_ = paddle::platform::CUDAPlace(config_.device_id);
  } else if (config_.place == "CPU") {
    place_ = paddle::platform::CPUPlace();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Place must be choosen from GPU or CPU, but got %s.", config_.place));
  }
  return true;
}

192
bool DistModel::CommInit() {
193 194 195
  std::unique_ptr<framework::ProgramDesc> comm_init_program(
      new framework::ProgramDesc());
  framework::BlockDesc *comm_init_block = comm_init_program->MutableBlock(0);
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  std::vector<int64_t> &ring_ids =
      config_.rank_to_ring_ids_[config_.local_rank];
  int64_t order = 0;
  std::string var_name_base = "comm_init_";
  for (int64_t ring_id : ring_ids) {
    VLOG(3) << "Init comm for ring id: " << ring_id;
    int64_t ranks_in_group = config_.ring_id_to_ranks_[ring_id].size();
    int64_t rank_in_group = 0;
    std::vector<int64_t> &ranks = config_.ring_id_to_ranks_[ring_id];
    for (int64_t rank : ranks) {
      if (config_.local_rank == rank) {
        break;
      }
      rank_in_group += 1;
    }
211
    std::vector<std::string> peer_endpoints;
212 213
    for (int64_t rank : ranks) {
      if (config_.local_rank == rank) {
214 215
        continue;
      }
216
      peer_endpoints.emplace_back(config_.trainer_endpoints[rank]);
217
    }
218 219 220
    InsertCommOp(var_name_base + std::to_string(order), ranks_in_group,
                 rank_in_group, peer_endpoints, comm_init_block, ring_id);
    order += 1;
221 222 223 224 225 226
  }
  framework::NaiveExecutor e(place_);
  e.CreateVariables(*comm_init_program, 0, true, scope_.get());
  e.Prepare(scope_.get(), *comm_init_program, 0, false);
  e.Run();
  VLOG(3) << "Comm init successful.";
227 228 229
  return true;
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
void DistModel::InsertCommOp(std::string tmp_var_name, int nranks, int rank,
                             const std::vector<std::string> &peer_endpoints,
                             framework::BlockDesc *block, int ring_id) {
  /*
   * tmp_var_name: the var name for var comm_id
   * nranks: number of total ranks
   * rank: the rank of local rank in the comm group
   * peer_endpoints: peer's endpoints
   * block: the block where to insert the comm ops
   * ring_id: the ring_id to be inited
   */
  std::string &endpoint = config_.current_endpoint;
  std::stringstream ss;
  ss << "Init comm with tmp var: " << tmp_var_name
     << ". The ring id is: " << ring_id << ". The group has: " << nranks
     << " ranks. Current rank in the group is: " << rank
     << ". The endpoint is: " << endpoint << ". Peer endpoints are: ";
  for (auto ep : peer_endpoints) {
    ss << ep << ", ";
  }
  VLOG(3) << ss.str();
  if (config_.place == "GPU") {
    framework::VarDesc *new_var = block->Var(tmp_var_name);
    new_var->SetType(framework::proto::VarType::RAW);
    new_var->SetPersistable(true);
    framework::OpDesc *gen_nccl_id_op = block->AppendOp();
    gen_nccl_id_op->SetType("c_gen_nccl_id");
    gen_nccl_id_op->SetOutput("Out", {tmp_var_name});
    gen_nccl_id_op->SetAttr("rank", rank);
    gen_nccl_id_op->SetAttr("endpoint", config_.current_endpoint);
    gen_nccl_id_op->SetAttr("other_endpoints", peer_endpoints);
    gen_nccl_id_op->SetAttr("ring_id", ring_id);
    gen_nccl_id_op->SetAttr("op_role",
                            static_cast<int>(framework::OpRole::kForward));
    gen_nccl_id_op->CheckAttrs();
    framework::OpDesc *comm_init_op = block->AppendOp();
    comm_init_op->SetType("c_comm_init");
    comm_init_op->SetInput("X", {tmp_var_name});
    comm_init_op->SetAttr("rank", rank);
    comm_init_op->SetAttr("nranks", nranks);
    comm_init_op->SetAttr("ring_id", ring_id);
    comm_init_op->SetAttr("op_role",
                          static_cast<int>(framework::OpRole::kForward));
    comm_init_op->CheckAttrs();
  } else {
    LOG(WARNING) << "DistModelInf doesn't init comm.";
    // TODO(fleet exe dev): comm init for more devices
  }
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
bool DistModel::PrepareScope() {
  scope_.reset(new framework::Scope());
  return true;
}

bool DistModel::PrepareProgram() {
  if (!LoadProgram()) {
    return false;
  }
  if (!LoadParameters()) {
    return false;
  }
  return true;
}

bool DistModel::LoadProgram() {
  VLOG(3) << "Loading program from " << config_.model_dir;
  PADDLE_ENFORCE_NE(config_.model_dir, "", platform::errors::InvalidArgument(
                                               "Model dir must be provided."));
  std::string model_path = config_.model_dir + ".pdmodel";
  framework::proto::ProgramDesc program_proto;
  std::string pb_content;
  // Read binary
  std::ifstream fin(model_path, std::ios::in | std::ios::binary);
  PADDLE_ENFORCE_EQ(
      static_cast<bool>(fin.is_open()), true,
      platform::errors::NotFound(
          "Cannot open file %s, please confirm whether the file is normal.",
          model_path));
  fin.seekg(0, std::ios::end);
  pb_content.resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(pb_content.at(0)), pb_content.size());
  fin.close();
  program_proto.ParseFromString(pb_content);
  VLOG(5) << pb_content;
  program_.reset(new framework::ProgramDesc(program_proto));
  return true;
}

bool DistModel::LoadParameters() {
  VLOG(3) << "Loading parameters from " << config_.model_dir;
  PADDLE_ENFORCE_NOT_NULL(program_.get(),
                          platform::errors::PreconditionNotMet(
                              "The program should be loaded first."));
  const auto &global_block = program_->MutableBlock(0);

  // create a temporary program to load parameters.

  std::unique_ptr<framework::ProgramDesc> load_program(
      new framework::ProgramDesc());
  framework::BlockDesc *load_block = load_program->MutableBlock(0);
  std::vector<std::string> params;

  for (auto *var : global_block->AllVars()) {
    if (IsPersistable(var)) {
      VLOG(3) << "persistable variable's name: " << var->Name();
      framework::VarDesc *new_var = load_block->Var(var->Name());
      new_var->SetShape(var->GetShape());
      new_var->SetDataType(var->GetDataType());
      new_var->SetType(var->GetType());
      new_var->SetLoDLevel(var->GetLoDLevel());
      new_var->SetPersistable(true);
      params.push_back(new_var->Name());
344 345
      // NOTE: if the params are stored in different files, 'load' op should be
      // added here
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    }
  }

  std::string param_path = config_.model_dir + ".pdiparams";
  // sort paramlist to have consistent ordering
  std::sort(params.begin(), params.end());
  // append just the load_combine op
  framework::OpDesc *op = load_block->AppendOp();
  op->SetType("load_combine");
  op->SetOutput("Out", params);
  op->SetAttr("file_path", {param_path});
  op->CheckAttrs();

  framework::NaiveExecutor e(place_);
  // Create all persistable variables in root scope to load them from ckpt.
  // Other non-persistable variables will be created in the micro scope
  // managed by fleet executor.
  e.CreateVariables(*program_, 0, true, scope_.get());
  e.Prepare(scope_.get(), *load_program, 0, false);
  e.Run();
  VLOG(3) << "After loading there are " << scope_->LocalVarNames().size()
          << " vars.";

  return true;
}

372 373
bool DistModel::PrepareFleetExe() {
  task_node_.reset(new TaskNode(program_.get(), config_.local_rank));
374
  // With auto cut, there is no concept of pp, no need to add dependency.
375 376 377 378 379 380 381 382 383 384 385 386
  task_node_->SetType("Compute");
  task_node_->Init();
  executor_desc_ = FleetExecutorDesc();
  executor_desc_.set_cur_rank(config_.local_rank);
  std::unordered_map<int64_t, int64_t> id_to_rank;
  for (int i = 0; i < config_.nranks; ++i) {
    RankInfo *rank_info = executor_desc_.add_cluster_info();
    rank_info->set_rank(i);
    rank_info->set_ip_port(config_.trainer_endpoints[i]);
    id_to_rank.insert({i, i});
  }
  fleet_exe.reset(new FleetExecutor(executor_desc_));
387
  fleet_exe->Init(carrier_id_, *(program_.get()), scope_.get(), place_, 1,
388 389 390 391 392 393 394 395 396 397 398 399 400
                  {task_node_.get()}, id_to_rank);
  return true;
}

bool DistModel::PrepareFeedAndFetch() {
  for (auto *op : program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      VLOG(3) << "feed op with feed var: " << op->Output("Out")[0];
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
      if (feeds_.size() <= static_cast<size_t>(idx)) {
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
      std::string var_name = op->Output("Out")[0];
      feed_names_[var_name] = idx;
      idx_to_feeds_[idx] = var_name;
      framework::VarDesc *real_var = program_->Block(0).FindVar(var_name);
      if (!real_var) {
        LOG(ERROR)
            << "The output of feed ops [" << var_name
            << "] cannot be found in the program. Check the inference program.";
        return false;
      }
      if (real_var->GetDataType() == framework::proto::VarType::FP32) {
        feeds_to_dtype_.insert({var_name, DistModelDataType::FLOAT32});
      } else if (real_var->GetDataType() == framework::proto::VarType::INT32) {
        feeds_to_dtype_.insert({var_name, DistModelDataType::INT32});
      } else if (real_var->GetDataType() == framework::proto::VarType::INT64) {
        feeds_to_dtype_.insert({var_name, DistModelDataType::INT64});
417 418
      } else if (real_var->GetDataType() == framework::proto::VarType::FP16) {
        feeds_to_dtype_.insert({var_name, DistModelDataType::FLOAT16});
419 420 421 422 423
      } else {
        LOG(ERROR) << "Don't support feed var dtype for: "
                   << real_var->GetDataType();
        return false;
      }
424 425 426 427 428 429 430
    } else if (op->Type() == "fetch") {
      VLOG(3) << "fetch op with fetch var: " << op->Input("X")[0];
      int idx = BOOST_GET_CONST(int, op->GetAttr("col"));
      if (fetches_.size() <= static_cast<size_t>(idx)) {
        fetches_.resize(idx + 1);
      }
      fetches_[idx] = op;
431 432 433 434
      idx_to_fetches_[idx] = op->Input("X")[0];
    }
  }

435 436 437 438 439 440 441
  if (feeds_.size() == 0) {
    LOG(ERROR) << "No feed ops in the inf program, please check the program.";
    return false;
  }
  if (fetches_.size() == 0) {
    LOG(ERROR) << "No fetch op in the inf program, please check the program.";
    return false;
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
  }
  return true;
}

bool DistModel::FeedData(const std::vector<DistModelTensor> &input_data,
                         framework::Scope *scope) {
  VLOG(3) << "DistModel is feeding data.";
  if (input_data.size() != feeds_.size()) {
    LOG(ERROR) << "Should provide " << feeds_.size() << " feeds, but got "
               << input_data.size() << " data.";
    return false;
  }
  feed_tensors_.resize(feeds_.size());
  for (size_t i = 0; i < input_data.size(); ++i) {
    // feed each data separately
    framework::LoDTensor *input_tensor = &(feed_tensors_[i]);
    if (!LoadDataFromDistModelTensor(input_data[i], input_tensor, place_)) {
      LOG(ERROR) << "Fail to load data from tensor " << input_data[i].name;
      return false;
    }
    std::string target_name = input_data[i].name;
    if (feed_names_.find(target_name) == feed_names_.end()) {
      LOG(ERROR) << "The input name [" << target_name
                 << "] cannot be found in the program."
                 << " DistModel loads data failed.";
      return false;
    }
    if (input_data[i].dtype != feeds_to_dtype_[target_name]) {
      LOG(ERROR) << "Feed var [" << target_name << "] expected dtype is: "
                 << DistModelDTypeToString(feeds_to_dtype_[target_name])
                 << ". But received dtype is: "
                 << DistModelDTypeToString(input_data[i].dtype) << ".";
      return false;
    }
    int feed_idx = feed_names_[target_name];
    framework::SetFeedVariable(scope, *input_tensor, "feed", feed_idx);
  }
  return true;
}

bool DistModel::FetchResults(std::vector<DistModelTensor> *output_data,
                             framework::Scope *scope) {
  VLOG(3) << "DistModel is fetch results.";
  output_data->resize(fetches_.size());
  for (size_t i = 0; i < fetches_.size(); ++i) {
    int idx = BOOST_GET_CONST(int, fetches_[i]->GetAttr("col"));
    VLOG(3) << "Fetching data for [" << idx_to_fetches_[idx] << "]";
    PADDLE_ENFORCE_EQ(
        static_cast<size_t>(idx), i,
        platform::errors::InvalidArgument(
            "Fetch op's col attr(%d) should be equal to the index(%d)", idx,
            i));
    framework::FetchType &fetch_var =
        framework::GetFetchVariable(*scope, "fetch", idx);
    auto &fetch = BOOST_GET(framework::LoDTensor, fetch_var);
497
    auto type = framework::TransToProtoVarType(fetch.dtype());
498 499 500 501 502 503 504 505 506 507 508 509
    auto output = &(output_data->at(i));
    output->name = idx_to_fetches_[idx];
    bool rst = false;
    if (type == framework::proto::VarType::FP32) {
      rst = FetchResult<float>(fetch, output);
      output->dtype = DistModelDataType::FLOAT32;
    } else if (type == framework::proto::VarType::INT64) {
      rst = FetchResult<int64_t>(fetch, output);
      output->dtype = DistModelDataType::INT64;
    } else if (type == framework::proto::VarType::INT32) {
      rst = FetchResult<int32_t>(fetch, output);
      output->dtype = DistModelDataType::INT32;
510 511 512
    } else if (type == framework::proto::VarType::FP16) {
      rst = FetchResult<float16>(fetch, output);
      output->dtype = DistModelDataType::FLOAT16;
513 514
    } else {
      LOG(ERROR) << "DistModel meets unknown fetch data type. DistModel only "
515 516
                    "supports float32, float16, int64 and int32 fetch type "
                    "for now.";
517 518 519 520
    }
    if (!rst) {
      LOG(ERROR) << "DistModel fails to fetch result " << idx_to_fetches_[idx];
      return false;
521 522 523 524 525
    }
  }
  return true;
}

526 527 528
template <typename T>
bool DistModel::FetchResult(const framework::LoDTensor &fetch,
                            DistModelTensor *output_data) {
529
  auto shape = phi::vectorize(fetch.dims());
530 531 532 533 534 535 536 537 538 539 540 541 542 543
  output_data->shape.assign(shape.begin(), shape.end());
  const T *data = fetch.data<T>();
  int64_t num_elems = fetch.numel();
  output_data->data.Resize(num_elems * sizeof(T));
  // The output of fetch op is always on the cpu, no need switch on place
  memcpy(output_data->data.data(), data, num_elems * sizeof(T));
  output_data->lod.clear();
  for (auto &level : fetch.lod()) {
    output_data->lod.emplace_back(level.begin(), level.end());
  }
  return true;
}

bool DistModel::Run(const std::vector<DistModelTensor> &input_data,
544
                    std::vector<DistModelTensor> *output_data) {
545 546 547 548
  VLOG(3) << "DistModel run for once.";

  DistModelTimer timer;
  timer.tic();
549 550 551
  double feed_elapse;
  double fleet_exe_elapse;
  double fetch_elapse;
552 553 554 555 556

  if (!FeedData(input_data, scope_.get())) {
    LOG(ERROR) << "DistModel failed at feeding data.";
    return false;
  }
557 558 559 560 561 562
  if (config_.enable_timer) {
    feed_elapse = timer.toc();
    LOG(INFO) << "Finish loading data, cost " << feed_elapse << "ms.";
  } else {
    VLOG(3) << "Finish loading data.";
  }
563 564

  fleet_exe->Run(carrier_id_);
565 566 567 568 569 570 571
  if (config_.enable_timer) {
    fleet_exe_elapse = timer.toc();
    LOG(INFO) << "Finish FleetExe running, cost "
              << fleet_exe_elapse - feed_elapse << "ms.";
  } else {
    VLOG(3) << "Finish FleetExe running.";
  }
572 573 574 575 576

  if (!FetchResults(output_data, scope_.get())) {
    LOG(ERROR) << "DistModel failed at fetching result.";
    return false;
  }
577 578 579 580 581 582 583 584 585
  if (config_.enable_timer) {
    fetch_elapse = timer.toc();
    LOG(INFO) << "Finish fetching data, cost "
              << fetch_elapse - fleet_exe_elapse << "ms.";
    LOG(INFO) << "DistModel finish inf, cost " << fetch_elapse << "ms";
  } else {
    VLOG(3) << "Finish fetching data.";
    VLOG(3) << "DistModel finish inf.";
  }
586
  return true;
587 588 589 590
}

}  // namespace distributed
}  // namespace paddle