learning_rate_scheduler.py 32.1 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

M
minqiyang 已提交
17 18
import math

M
minqiyang 已提交
19
from .. import unique_name
20 21
from ..framework import Variable
from ..data_feeder import check_type
M
minqiyang 已提交
22

23
__all__ = [
M
minqiyang 已提交
24
    'NoamDecay', 'PiecewiseDecay', 'NaturalExpDecay', 'ExponentialDecay',
25 26
    'InverseTimeDecay', 'PolynomialDecay', 'CosineDecay', 'LinearLrWarmup',
    'ReduceLROnPlateau'
27
]
M
minqiyang 已提交
28 29 30 31 32


class LearningRateDecay(object):
    """
    Base class of learning rate decay
33 34 35 36
    
    Define the common interface of an LearningRateDecay.
    User should not use this class directly,
    but need to use one of it's implementation.
M
minqiyang 已提交
37 38
    """

M
minqiyang 已提交
39 40 41
    def __init__(self, begin=0, step=1, dtype='float32'):
        self.step_num = begin
        self.step_size = step
M
minqiyang 已提交
42 43 44 45 46
        self.dtype = dtype

    def __call__(self):
        lr = self.step()
        if isinstance(lr, float):
M
minqiyang 已提交
47
            lr = self.create_lr_var(lr)
M
minqiyang 已提交
48
        self.step_num += self.step_size
M
minqiyang 已提交
49 50
        return lr

M
minqiyang 已提交
51
    def create_lr_var(self, lr):
52 53 54 55 56 57 58 59
        """
        convert lr from float to variable

        Args: 
            lr: learning rate
        Returns:
            learning rate variable
        """
M
minqiyang 已提交
60
        from .. import layers
M
minqiyang 已提交
61 62 63 64 65
        lr = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(lr),
            dtype=self.dtype,
Z
Zeng Jinle 已提交
66
            persistable=False)
M
minqiyang 已提交
67
        return lr
M
minqiyang 已提交
68 69 70 71 72

    def step(self):
        raise NotImplementedError()


M
minqiyang 已提交
73
class PiecewiseDecay(LearningRateDecay):
74
    """
D
DuYao 已提交
75
    Piecewise decay scheduler.
76 77 78 79 80

    The algorithm can be described as the code below.

    .. code-block:: text

D
DuYao 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93
        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if global_step < 10000:
            learning_rate = 1.0
        elif 10000 <= global_step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Parameters:
        boundaries(list): A list of steps numbers. The type of element in the list is python int. 
        values(list): A list of learning rate values that will be picked during
            different step boundaries. The type of element in the list is python float.
T
tianshuo78520a 已提交
94
        begin(int): The begin step to initialize the global_step in the description above.
D
DuYao 已提交
95
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
96
            The default value is 1.
D
DuYao 已提交
97 98
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
99

100
    Returns:
D
DuYao 已提交
101
        None.
102

103 104 105 106 107 108 109
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          with fluid.dygraph.guard():
110
              emb = fluid.dygraph.Embedding( [10, 10] )
111
              optimizer = fluid.optimizer.SGD(
112 113
                 learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0),
                 parameter_list = emb.parameters() )
114 115
    """

M
minqiyang 已提交
116 117
    def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
        super(PiecewiseDecay, self).__init__(begin, step, dtype)
M
minqiyang 已提交
118 119 120 121 122
        self.boundaries = boundaries
        self.values = values

        self.vars = []
        for value in values:
123
            self.vars.append(value)
M
minqiyang 已提交
124 125

    def step(self):
M
minqiyang 已提交
126 127
        for i in range(len(self.boundaries)):
            if self.step_num < self.boundaries[i]:
M
minqiyang 已提交
128
                return self.vars[i]
129
        return self.create_lr_var(self.vars[len(self.values) - 1])
130 131 132


class NaturalExpDecay(LearningRateDecay):
133 134 135
    """
    Applies natural exponential decay to the initial learning rate.
    
D
DuYao 已提交
136
    The algorithm can be described as following.
137

D
DuYao 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    .. math::

        decayed\_learning\_rate = learning\_rate * e^{y} 

    If staircase is set to False, then:

    .. math::

        y = - decay\_rate * \\frac{global\_step}{decay\_steps}

    If staircase is set to True, then:

    .. math::

        y = - decay\_rate * math.floor(\\frac{global\_step}{decay\_steps}) 

    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(int): The decay rate.
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The 
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
164
            The default value is 1.
D
DuYao 已提交
165 166
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
167

168
    Returns:
D
DuYao 已提交
169
        None.
170

171 172 173
    Examples:
        .. code-block:: python

174 175 176 177 178 179 180 181 182 183 184 185
            import paddle.fluid as fluid
            base_lr = 0.1
            with fluid.dygraph.guard():
                emb = fluid.dygraph.Embedding([10, 10])
                sgd_optimizer = fluid.optimizer.SGD(
                        learning_rate=fluid.dygraph.NaturalExpDecay(
                            learning_rate=base_lr,
                            decay_steps=10000,
                            decay_rate=0.5,
                            staircase=True),
                        parameter_list=emb.parameters())

186 187 188

    """

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(NaturalExpDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)
        decayed_lr = self.learning_rate * layers.exp(-1 * self.decay_rate *
                                                     div_res)

        return decayed_lr


class ExponentialDecay(LearningRateDecay):
215 216 217
    """
    Applies exponential decay to the learning rate.

D
DuYao 已提交
218
    The algorithm can be described as following.
219
    
D
DuYao 已提交
220
    .. math::
221

D
DuYao 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        decayed\_learning\_rate = learning\_rate * decay\_rate ^ y 

    If staircase is set to False, then:

    .. math::

        y = \\frac{global\_step}{decay\_steps} 

    If staircase is set to True, then:

    .. math::

        y = math.floor(\\frac{global\_step}{decay\_steps})


    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The 
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
247
            The default value is 1.
D
DuYao 已提交
248 249
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
250

251
    Returns:
D
DuYao 已提交
252
        None.
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
              sgd_optimizer = fluid.optimizer.SGD(
    	            learning_rate=fluid.dygraph.ExponentialDecay(
		        learning_rate=base_lr,
    		        decay_steps=10000,
		        decay_rate=0.5,
		        staircase=True))

    """

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(ExponentialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate * (self.decay_rate**div_res)

        return decayed_lr


class InverseTimeDecay(LearningRateDecay):
295 296 297
    """
    Applies inverse time decay to the initial learning rate.

D
DuYao 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    The algorithm can be described as following.
    If staircase is set to False, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}  

    If staircase is set to True, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}

    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The 
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
321
            The default value is 1.
D
DuYao 已提交
322 323
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be 
            'float32', 'float64'. The default value is 'float32'.
324

325
    Returns:
D
DuYao 已提交
326
        None.
327

328 329 330 331 332 333
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
334
              emb = fluid.dygraph.Embedding([10, 10])
335 336 337 338 339
              sgd_optimizer = fluid.optimizer.SGD(
	          learning_rate=fluid.dygraph.InverseTimeDecay(
		        learning_rate=base_lr,
		        decay_steps=10000,
		        decay_rate=0.5,
340 341
		        staircase=True),
                  parameter_list = emb.parameters())
342 343 344

    """

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 decay_rate,
                 staircase=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(InverseTimeDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)

        return decayed_lr


class PolynomialDecay(LearningRateDecay):
371 372 373
    """
    Applies polynomial decay to the initial learning rate.

D
DuYao 已提交
374 375 376 377 378 379 380
    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

        decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps}) 
381

D
DuYao 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    If cycle is set to False, then:

    .. math::

        global\_step & = min(global\_step, decay\_steps) 

        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        decay_steps(int32): The decay step size. It determines the decay cycle.
        end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
        power(float, optional): Power of polynomial. The default value is 1.0.
        cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
402
            The default value is 1.
D
DuYao 已提交
403 404
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
405

406
    Returns:
D
DuYao 已提交
407
        None.
408

409 410 411 412 413 414 415 416
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          with fluid.dygraph.guard():
417
              emb = fluid.dygraph.Embedding( [10, 10])
418 419
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.PolynomialDecay(
420 421
                  start_lr, total_step, end_lr, power=1.0),
                  parameter_list = emb.parameters())
422 423 424

    """

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
    def __init__(self,
                 learning_rate,
                 decay_steps,
                 end_learning_rate=0.0001,
                 power=1.0,
                 cycle=False,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(PolynomialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.end_learning_rate = end_learning_rate
        self.power = power
        self.cycle = cycle

    def step(self):
        from .. import layers
M
minqiyang 已提交
443 444
        tmp_step_num = self.step_num
        tmp_decay_steps = self.decay_steps
445 446
        if self.cycle:
            div_res = layers.ceil(
M
minqiyang 已提交
447
                self.create_lr_var(tmp_step_num / float(self.decay_steps)))
448

M
minqiyang 已提交
449 450
            if tmp_step_num == 0:
                div_res = self.create_lr_var(1.0)
M
minqiyang 已提交
451
            tmp_decay_steps = self.decay_steps * div_res
452
        else:
M
minqiyang 已提交
453 454 455 456 457 458 459
            tmp_step_num = self.create_lr_var(tmp_step_num
                                              if tmp_step_num < self.decay_steps
                                              else self.decay_steps)

        decayed_lr = (self.learning_rate - self.end_learning_rate) * \
            ((1 - tmp_step_num / tmp_decay_steps) ** self.power) + self.end_learning_rate
        return decayed_lr
460

M
minqiyang 已提交
461 462

class CosineDecay(LearningRateDecay):
463 464 465
    """
    Applies cosine decay to the learning rate.

D
DuYao 已提交
466
    The algorithm can be described as following.
467 468 469

    .. math::

D
DuYao 已提交
470
        decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)
471
    
D
DuYao 已提交
472 473 474 475 476 477 478 479
    Parameters:
        learning_rate(Variable|float): The initial learning rate. If the type 
            is Variable, it's a tensor with shape [1], the data type can be  
            float32 or float64. It also can be set to python int number.
        step_each_epoch(int): The number of steps in an epoch.
        epochs(int): The number of epochs.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
480
            The default value is 1.
D
DuYao 已提交
481 482
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
483

484
    Returns:
D
DuYao 已提交
485
        None.
486

487 488 489 490 491 492 493 494 495 496
    Examples:
	.. code-block:: python

  	    base_lr = 0.1
            with fluid.dygraph.guard():
                optimizer  = fluid.optimizer.SGD(
        	    learning_rate = fluid.dygraph.CosineDecay(
	                    base_lr, 10000, 120) )
    """

M
minqiyang 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    def __init__(self,
                 learning_rate,
                 step_each_epoch,
                 epochs,
                 begin=0,
                 step=1,
                 dtype='float32'):
        super(CosineDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def step(self):
        from .. import layers
        cur_epoch = layers.floor(
            self.create_lr_var(self.step_num / self.step_each_epoch))
        decayed_lr = self.learning_rate * 0.5 * (
            layers.cos(cur_epoch * math.pi / self.epochs) + 1)
        return decayed_lr


class NoamDecay(LearningRateDecay):
519
    """
D
DuYao 已提交
520 521 522 523 524 525
    Applies Noam decay to the initial learning rate. 

    The algorithm can be described as following.

    .. math::

526
        decayed\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
D
DuYao 已提交
527 528 529 530 531 532 533 534 535 536

    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_ 

    Parameters:
        d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable, 
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable, 
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
537
            The default value is 1.
D
DuYao 已提交
538 539
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
540 541 542
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0
543

544
    Returns:
D
DuYao 已提交
545
        None.
546

547 548 549 550 551 552 553
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          warmup_steps = 100
          learning_rate = 0.01
          with fluid.dygraph.guard():
554
              emb = fluid.dygraph.Embedding([10, 10])
555 556 557
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.NoamDecay(
                         1/(warmup_steps *(learning_rate ** 2)),
558 559
                         warmup_steps),
                  parameter_list = emb.parameters())
560 561
    """

562 563 564 565 566 567 568
    def __init__(self,
                 d_model,
                 warmup_steps,
                 begin=1,
                 step=1,
                 dtype='float32',
                 learning_rate=1.0):
M
minqiyang 已提交
569
        super(NoamDecay, self).__init__(begin, step, dtype)
570
        self.learning_rate = learning_rate
M
minqiyang 已提交
571 572 573 574 575
        self.d_model = d_model
        self.warmup_steps = warmup_steps

    def step(self):
        from .. import layers
M
minqiyang 已提交
576 577
        a = self.create_lr_var(self.step_num**-0.5)
        b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
578 579
        lr_value = self.learning_rate * (self.d_model
                                         **-0.5) * layers.elementwise_min(a, b)
M
minqiyang 已提交
580
        return lr_value
H
hong 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611


class LinearLrWarmup(LearningRateDecay):
    """
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
    
    When global_step < warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
    
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
    
    When global_step >= warmup_steps, learning rate is updated as:
    
    .. code-block:: text
    
            lr = learning_rate
    
    where lr is the learning_rate after warm-up.
    
    Args:
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
612
            The default value is 1.
H
hong 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
    
    Returns:
        Variable: Warm-up learning rate with the same data type as learning_rate.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
    
        learning_rate = 0.1 
        warmup_steps = 50
628
        start_lr = 0
H
hong 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
        end_lr = 0.1

        with fluid.dygraph.guard(): 
            lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
    
       
    """

    def __init__(self,
                 learning_rate,
                 warmup_steps,
                 start_lr,
                 end_lr,
                 begin=1,
                 step=1,
                 dtype='float32'):
        super(LinearLrWarmup, self).__init__(begin, step, dtype)
        type_check = isinstance(learning_rate, float) or isinstance(
            learning_rate, int) or isinstance(learning_rate, LearningRateDecay)
        if not type_check:
            raise TypeError(
                "the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}".
                format(learning_rate))
        self.learning_rate = learning_rate
        self.warmup_steps = warmup_steps
Z
Zeng Jinle 已提交
654 655
        assert end_lr > start_lr, "end_lr {} must be greater than start_lr {}".format(
            end_lr, start_lr)
H
hong 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668
        self.lr_ratio_before_warmup = (
            float(end_lr) - float(start_lr)) / float(warmup_steps)

    def step(self):
        base_lr = self.learning_rate
        if isinstance(self.learning_rate, LearningRateDecay):
            base_lr = base_lr()

        from .. import layers
        if self.step_num < self.warmup_steps:
            return self.lr_ratio_before_warmup * self.step_num
        else:
            return base_lr
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858


class ReduceLROnPlateau(LearningRateDecay):
    """
    Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate 
    by 2 to 10 times once model performance has no longer improvement.

    The ``loss`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``loss`` 
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` . 
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number 
    of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.

    Args:
        learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
            If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the 
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning 
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` . 
            It should be less than 1.0. Default: 0.1.
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced. 
            Default: 10.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` . 
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum 
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
        eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
            ignored. Default: 1e-8.
        dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. Default: 'float32'. 
    
    Returns:
        Reduced learning rate.

    Examples:
    
    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = fluid.dygraph.Linear(10, 10)
            input = fluid.dygraph.to_variable(x)

            reduce_lr = fluid.dygraph.ReduceLROnPlateau(
                                    learning_rate = 1.0,
                                    decay_rate = 0.5,
                                    patience = 5,
                                    verbose = True, 
                                    cooldown = 3)
            adam = fluid.optimizer.Adam(
                learning_rate = reduce_lr,
                parameter_list = linear.parameters())

            for epoch in range(10):
                total_loss = 0
                for bath_id in range(5):
                    out = linear(input)
                    loss = fluid.layers.reduce_mean(out)
                    total_loss += loss
                    adam.minimize(loss)
                
                avg_loss = total_loss/5

                # adjust learning rate according to avg_loss
                reduce_lr.step(avg_loss)
                lr = adam.current_step_lr()
                print("current avg_loss is %s, current lr is %s" % (avg_loss.numpy()[0], lr))

    """

    def __init__(self,
                 learning_rate,
                 mode='min',
                 decay_rate=0.1,
                 patience=10,
                 verbose=False,
                 threshold=1e-4,
                 threshold_mode='rel',
                 cooldown=0,
                 min_lr=0,
                 eps=1e-8,
                 dtype='float32'):
        super(ReduceLROnPlateau, self).__init__(dtype=dtype)
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode ' + mode + ' is unknown!')
        self.mode = mode

        if decay_rate >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
            )
        self.decay_rate = decay_rate

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
            raise ValueError('threshold mode ' + threshold_mode +
                             ' is unknown!')
        self.threshold_mode = threshold_mode

        check_type(learning_rate, 'learning_rate', (float, int, Variable),
                   'ReduceLROnPlateau')
        if isinstance(learning_rate, (float, int)):
            learning_rate = self.create_lr_var(learning_rate)

        self.learning_rate = learning_rate
        self.verbose = verbose
        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = self.create_lr_var(min_lr)
        self.eps = eps

        self.cooldown_counter = 0
        self.best_loss = None
        self.num_bad_epochs = 0
        self.epoch = 0

    def __call__(self):
        return self.learning_rate

    def step(self, loss):
        """
        It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .  
        The new learning rate will take effect on next call to ``optimizer.minimize`` .

        Args:
            loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce. 
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should 
                be 1-D Tensor with shape [1]. 
                Specially, if ``mode`` has been set to ``'max'`` ,  the learning rate will reduce when it stops ascending.
        Returns:
            None
        
        Examples:
            Please refer to the example of current LearningRateDecay.
        """

        # loss must be 1-D Tensor with shape [1]
        check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
        assert len(loss.shape) == 1 and loss.shape[0] == 1, "the loss.shape " \
            "should be (1L,), but the current loss.shape is {}. Maybe that "  \
            "you should call fluid.layers.mean to process it first.".format(loss.shape)

        self.epoch += 1
        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best_loss is None or self._is_better(loss, self.best_loss):
                self.best_loss = loss
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                from .. import layers
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
                new_lr = layers.elementwise_max(self.learning_rate *
                                                self.decay_rate, self.min_lr)
                if self.learning_rate - new_lr > self.eps:
                    if self.verbose:
                        print('Epoch {}: reducing learning rate from {} to {}.'.
                              format(self.epoch,
                                     self.learning_rate.numpy()[0],
                                     new_lr.numpy()[0]))
                    self.learning_rate = new_lr

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold