reshape_op.h 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yibing Liu 已提交
19 20 21 22

namespace paddle {
namespace operators {

G
guosheng 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of ReshapeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of ReshapeOp should not be null.");

    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    PADDLE_ENFORCE(!shape.empty(),
                   "The shape information must be set by Attr(shape).");

    std::vector<int64_t> output_shape;
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    // NOTE: Reshape op cannot reshape an input sequence batch into an
    // output sequence batch that has a different number of time steps. Here
    // output always shares the LoD information with input. But if
    // Attr(shape) contains 0 or -1, the actual output shape can only be
    // determined during runtime. The check for wheather it is a valid
    // output sequence batch is performed in runtime.
    ctx->ShareLoD("X", /*->*/ "Out");
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
    // only one dimension canbe set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE(
            unk_dim_idx == -1,
            "Only one input dimension of Attr(shape) can be unknown.");
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE(
            static_cast<int>(i) < in_dims.size(),
            "The index of dimension to copy from input shape must be less "
            "than the size of input shape.");
      } else {
        PADDLE_ENFORCE(
            shape[i] > 0,
            "Each input dimension of Attr(shape) must not be negtive except "
            "one unknown dimension.");
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      output_shape[unk_dim_idx] = -in_size / capacity;
      PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
                        "Invalid shape is given.");
    } else {
      PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
    }
    return framework::make_ddim(output_shape);
  }
};

Q
QI JUN 已提交
98
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
99
class ReshapeKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
100
 public:
G
guosheng 已提交
101 102 103
  void Compute(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
ying 已提交
104

G
guosheng 已提交
105 106
    auto out_dims = ReshapeOp::ValidateShape(
        ctx.Attr<std::vector<int>>("shape"), in->dims());
C
caoying03 已提交
107 108 109 110 111 112 113 114 115 116

    if (!in->lod().empty()) {
      PADDLE_ENFORCE_EQ(
          out_dims[0], in->dims()[0],
          "Reshape operator cannot reshape an input sequence batch "
          "into an output sequence batch that has a different "
          "number of time steps. Please consider using "
          "sequence_reshape op.");
    }

Y
Yan Chunwei 已提交
117 118 119 120 121 122 123 124 125
    bool inplace = ctx.Attr<bool>("inplace");
    if (!inplace) {
      out->mutable_data<T>(ctx.GetPlace());
      framework::TensorCopy(*in, ctx.GetPlace(), ctx.device_context(), out);
      out->Resize(out_dims);
    } else {
      out->ShareDataWith(*in);
      out->Resize(out_dims);
    }
Y
Yibing Liu 已提交
126 127 128
  }
};

Q
QI JUN 已提交
129
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
130
class ReshapeGradKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
131
 public:
G
guosheng 已提交
132 133 134
  void Compute(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
C
caoying03 已提交
135

Y
Yibing Liu 已提交
136
    d_x->mutable_data<T>(ctx.GetPlace());
C
caoying03 已提交
137
    bool inplace = ctx.Attr<bool>("inplace");
Y
Yibing Liu 已提交
138 139

    auto in_dims = d_x->dims();
C
caoying03 已提交
140 141 142 143 144 145 146
    if (!inplace) {
      framework::TensorCopy(*d_out, ctx.GetPlace(), ctx.device_context(), d_x);
      d_x->Resize(in_dims);
    } else {
      d_x->ShareDataWith(*d_out);
      d_x->Resize(in_dims);
    }
Y
Yibing Liu 已提交
147 148
  }
};
H
Helin Wang 已提交
149 150
}  // namespace operators
}  // namespace paddle