distribute_transpiler.py 86.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
56
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
57
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
58 59 60 61 62 63 64 65 66
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
67 68


T
typhoonzero 已提交
69 70 71 72 73 74
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
75

T
typhoonzero 已提交
76 77
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
78 79


80 81 82 83
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
84
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
85
    """
86 87 88 89 90 91
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
92
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
93 94 95

    Args:
        var_list (list): List of variables.
96 97
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
98 99
        min_block_size (int): Minimum splitted block size.
    Returns:
100
        blocks (list[(varname, block_id, current_block_size)]): A list
101
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
102 103 104
    """
    blocks = []
    for var in var_list:
105
        split_count = slice_count
T
typhoonzero 已提交
106 107 108 109
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
110
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
120
        # update split_count after aligning
T
typhoonzero 已提交
121
        split_count = int(math.ceil(var_numel / float(block_size)))
122
        for block_id in range(split_count):
T
typhoonzero 已提交
123 124 125 126 127 128 129
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
130 131
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
146
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
147 148
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
149 150 151 152 153
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
154
    enable_dc_asgd = False
W
Wu Yi 已提交
155 156
    # supported modes: pserver, nccl2
    mode = "pserver"
157
    print_log = False
W
Wu Yi 已提交
158
    wait_port = True
Q
Qiao Longfei 已提交
159 160
    # split the send recv var in runtime
    runtime_split_send_recv = False
G
gongweibao 已提交
161 162


Y
gen rst  
yi.wu 已提交
163
class DistributeTranspiler(object):
Y
yi.wu 已提交
164 165 166 167
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
168
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
169

W
Wu Yi 已提交
170 171 172 173 174 175 176 177 178
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
179 180 181 182

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
196
                                                                pserver_program)
T
Tink_Y 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
211
    """
Y
Yancey1989 已提交
212

G
gongweibao 已提交
213 214 215 216 217 218 219 220 221
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

222 223 224
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
225 226 227
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
228 229 230 231
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
232 233
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
234 235 236 237 238 239
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
240 241
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
258
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
259
        sparse_update_ops = []
260
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
261 262
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
263
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
264 265 266
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
267
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
268
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
269 270 271
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
272
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
273
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
274 275 276 277 278 279 280
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
281

282 283 284 285 286
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
287
                  sync_mode=True,
W
Wu Yi 已提交
288 289
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
290
        """
Y
yi.wu 已提交
291 292 293 294 295 296 297
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
298 299
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
300 301
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
302 303 304
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
305
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
306 307
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
308 309 310
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
311 312 313
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
314 315
        if startup_program is None:
            startup_program = default_startup_program()
316
        self.origin_program = program
W
Wu Yi 已提交
317 318
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
319

W
Wu Yi 已提交
320 321
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
322
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
323 324 325 326
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
327 328
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
329 330
            return

331 332 333 334 335
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
336
        self.vars_overview = VarsDistributed()
337 338
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
339
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
340 341
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
342
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
343
        self.grad_name_to_param_name = dict()
344 345
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
346
            self.grad_name_to_param_name[grad_var.name] = param_var.name
347

Q
Qiao Longfei 已提交
348
        # get all sparse update ops
Q
Qiao Longfei 已提交
349
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
350
            self.origin_program)
Q
Qiao Longfei 已提交
351
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
352 353
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
354 355 356
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
357
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
358 359 360
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

361
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
362
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
363
        self._init_splited_vars()
364

G
gongweibao 已提交
365
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
366
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
367
        send_vars = []
368 369 370 371 372 373

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
374
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
375

G
gongweibao 已提交
376
        if not self.config.slice_var_up:
377 378
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
379

380
        self.grad_name_to_send_dummy_out = dict()
381
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
382
            eplist = ps_dispatcher.dispatch(splited_vars)
383

G
gongweibao 已提交
384
            if not self.config.slice_var_up:
385 386
                assert (len(splited_vars) == 1)

387
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
388
            if len(splited_vars) == 1:
389
                splited_grad_varname = splited_vars[0].name
390 391
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
392 393
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
394
                        grad_varname]
Q
Qiao Longfei 已提交
395 396 397 398
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
399
            elif len(splited_vars) > 1:
400
                orig_var = program.global_block().vars[splited_grad_varname]
401 402
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
403 404 405 406
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
407 408
            else:
                AssertionError("Can not insert the send op by original "
409
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
410

W
Wu Yi 已提交
411 412
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
413
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
414

Q
Qiao Longfei 已提交
415 416 417 418 419 420 421 422 423 424 425
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
426 427 428 429
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
430
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
431
                index=index + 1,
432
                type="send",
Q
Qiao Longfei 已提交
433
                inputs={"X": send_input_vars},
434
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
435 436
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
437 438
                    "sections": sections,
                    "send_varnames": send_varnames,
439
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
440 441 442 443
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
444
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
445
                })
Y
update  
Yancey1989 已提交
446 447
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
448 449

        if self.sync_mode:
W
Wu Yi 已提交
450 451
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
452 453 454 455
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
456
            input_deps = list(self.grad_name_to_send_dummy_out.values())
457

Y
Yancey1989 已提交
458 459
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
460
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
461
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
462 463
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
464 465
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
466
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
467
                })
Y
Yancey1989 已提交
468

G
gongweibao 已提交
469
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
470
        recv_vars = []
Y
update  
Yancey1989 已提交
471
        for _, var in enumerate(send_vars):
472
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
473
        ps_dispatcher.reset()
Y
Yancey1989 已提交
474 475
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
476
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
477 478
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
479

480 481 482 483
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
484
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
485
        all_recv_outputs = []
486
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
487
            eps = []
Q
Qiao Longfei 已提交
488
            table_names = []
Y
Yancey1989 已提交
489 490 491
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
492
                table_names.append(var.name)
W
Wu Yi 已提交
493 494 495 496
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
497
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
498
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
499

W
Wu Yi 已提交
500 501 502 503 504 505 506 507 508
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
509
            if param_varname in self.sparse_param_to_height_sections:
510 511 512 513 514 515

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
516 517
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
518 519
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
520
            else:
Q
Qiao Longfei 已提交
521
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
522 523 524 525 526 527 528 529 530 531 532 533
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
534

Q
qiaolongfei 已提交
535
        if self.sync_mode:
W
Wu Yi 已提交
536
            # form a WAW dependency
Q
qiaolongfei 已提交
537 538 539
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
540
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
541 542
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
543
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
544 545
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
546

547
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
548 549
            if len(splited_var) <= 1:
                continue
550
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
551 552 553 554 555 556 557 558 559
            if param_varname not in self.sparse_param_to_height_sections:
                program.global_block().append_op(
                    type="concat",
                    inputs={"X": splited_var},
                    outputs={"Out": [orig_param]},
                    attrs={
                        "axis": 0,
                        RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                    })
T
typhoonzero 已提交
560

G
gongweibao 已提交
561 562
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

563
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
564 565
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
566
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
567

568 569 570
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
571
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
572 573 574 575 576 577
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
578
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
579
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
580

T
typhoonzero 已提交
581
        lr_ops = self._get_lr_ops()
582
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
583 584
        delete_ops(self.origin_program.global_block(), lr_ops)

585 586
        # delete table init op
        if self.has_distributed_lookup_table:
587 588 589
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
590 591
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
592 593 594 595 596
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
597
            table_init_op = table_param_init_op[0]
598 599 600 601 602 603
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
604

605
        self.origin_program.__str__()
G
gongweibao 已提交
606

W
Wu Yi 已提交
607 608 609
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

610
        return self.origin_program
T
typhoonzero 已提交
611

W
Wu Yi 已提交
612
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
613 614 615 616
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
617
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
618
            eplist (list): A list of strings indicating
G
gongweibao 已提交
619 620 621 622

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
623
        startup_program = self.startup_program
G
gongweibao 已提交
624 625 626 627

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
628
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
649
                inputs={"X": []},
G
gongweibao 已提交
650 651 652 653 654 655
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
656 657
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
658 659 660
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
661
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
662 663 664 665 666
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
667
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
668
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
669 670
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
671
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
672
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
673 674 675 676 677 678 679 680 681 682
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
683 684 685 686 687 688 689 690
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
691 692
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
693
        Get parameter server side program.
694

Y
yi.wu 已提交
695 696
        Args:
            endpoint (str): current parameter server endpoint.
697

Y
yi.wu 已提交
698 699
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
700
        """
Y
yi.wu 已提交
701 702 703 704
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
705 706 707
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
708 709
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
710
        pserver_program.random_seed = self.origin_program.random_seed
711 712
        pserver_program._copy_dist_param_info_from(self.origin_program)

713
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
714 715 716 717 718 719 720 721
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
722 723 724 725 726
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
727 728 729 730 731 732 733 734 735
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
736
            if self.sync_mode and self.trainer_num > 1:
737
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
738 739 740 741 742 743 744 745 746
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
747

Q
qiaolongfei 已提交
748
        # step 3
749
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
750 751 752
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
753
        # step 3.2
T
typhoonzero 已提交
754 755 756 757
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
758 759
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
760
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
761
        # step 3.3
W
Wu Yi 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
780
        # Iterate through the ops, and if an op and the optimize ops
781
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
782
        # append it into the sub program.
T
typhoonzero 已提交
783 784 785

        global_ops = []

Y
wip  
yi.wu 已提交
786 787
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
788
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
789
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
790
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
791
            elif op not in lr_ops:
Q
Qiyang Min 已提交
792
                self._append_pserver_non_opt_ops(block, op)
793

Y
Yancey1989 已提交
794
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
795 796 797 798 799 800 801 802
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
803
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
804 805 806

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
807
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
808 809

            # clone ops
Y
Yancey1989 已提交
810 811
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
812
                # clone sub_block of op
Y
Yancey1989 已提交
813
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
814 815

            # reset the block of op
W
Wu Yi 已提交
816
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
817

818
        # append lr decay ops to the child block if exists
819
        lr_ops = self._get_lr_ops()
820 821
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
822
        if len(lr_ops) > 0:
W
Wu Yi 已提交
823
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
824
                pserver_program.num_blocks - 1)
825
            optimize_blocks.append(lr_decay_block)
826
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
827
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
828
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
829 830
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
831

T
typhoonzero 已提交
832
        # append op to the current block
Q
qiaolongfei 已提交
833
        grad_to_block_id = []
Q
qiaolongfei 已提交
834
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
835
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
836
            per_opt_block = pserver_program._create_block(pre_block_idx)
837
            optimize_blocks.append(per_opt_block)
838
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
839
            # append grad merging ops before clip and weight decay
840 841
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
842
            for _, op in enumerate(self.optimize_ops):
843
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
844
                # merged_var should be the input var name of L2Decay
845 846 847
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
848 849 850
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
851 852 853 854 855 856
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
857
                            op not in global_ops:
858 859 860 861 862
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
863

864
        # dedup grad to ids list
W
Wu Yi 已提交
865
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
866
        # append global ops
867
        if global_ops:
W
Wu Yi 已提交
868
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
869
                pserver_program.num_blocks - 1)
870
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
871
            for glb_op in global_ops:
X
Xi Chen 已提交
872
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
873
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
874

875
        # process distributed lookup_table
Q
qiaolongfei 已提交
876
        prefetch_var_name_to_block_id = []
877 878
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
879
            table_opt_block = self._create_table_optimize_block(
880
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
881
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
882
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
883
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
884 885
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
886

T
tangwei12 已提交
887
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
888 889
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
890

891
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
892 893
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
894 895 896 897 898 899
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
900
        attrs = {
901
            "optimize_blocks": optimize_blocks,
902 903 904
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
905
            "grad_to_block_id": grad_to_block_id,
906
        }
T
tangwei12 已提交
907 908

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
909
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
910 911
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
912

T
tangwei12 已提交
913 914 915 916
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
917 918 919 920 921
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
922
            attrs=attrs)
923

W
Wu Yi 已提交
924
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
925 926
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
927 928
        return pserver_program

W
Wu Yi 已提交
929 930 931 932 933 934
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
935

W
Wu Yi 已提交
936 937 938 939
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
940 941
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
942 943
        return pserver_prog, pserver_startup

944 945
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
946
                            pserver_program=None,
947
                            startup_program=None):
T
typhoonzero 已提交
948
        """
W
Wu Yi 已提交
949 950
        **Deprecated**

T
typhoonzero 已提交
951 952 953
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
954 955 956

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
957 958
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
959
                when initalizing
960

Y
yi.wu 已提交
961 962
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
963 964
        """
        s_prog = Program()
W
Wu Yi 已提交
965
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
966
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
967 968 969 970 971 972 973 974 975 976 977
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
978
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
979
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
980
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
981 982 983 984
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
985
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
986 987
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
988 989 990 991 992 993 994 995 996 997
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
998 999

            if op_on_pserver:
1000 1001 1002
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1003 1004 1005
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
1006
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1007 1008 1009 1010
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1011
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1021

T
typhoonzero 已提交
1022 1023
        return s_prog

1024 1025
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1026
        block_suffix = "block"
1027 1028 1029
        block_idx = 0
        offset = 0
        is_slice = False
1030

1031
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1032

1033 1034
        if not block_name:
            return is_slice, block_idx, offset
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

        orig_dim1_flatten = reduce(lambda x, y: x * y, slice_vars[0].shape[1:])

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1104

Y
yi.wu 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1144
    def _init_splited_vars(self):
Y
yi.wu 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1168
        if self.config.slice_var_up:
Y
yi.wu 已提交
1169 1170
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1171 1172 1173
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1174
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1175 1176
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1177 1178 1179
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1180 1181 1182 1183
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1184 1185
        assert (len(grad_blocks) == len(param_blocks))

1186
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1187 1188
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1205
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1206 1207 1208 1209
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1210
        # dict(grad_splited_var -> param_splited_var)
1211
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1212 1213 1214
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1215
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1216
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1217 1218

        # create mapping of endpoint -> split var to create pserver side program
1219
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1229
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1230 1231
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1232
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1233
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1234 1235
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1236 1237
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1238 1239 1240 1241 1242 1243

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1244 1245
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1246
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1247 1248 1249
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1250 1251
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1252 1253
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1254 1255 1256
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1257
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1258
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1259 1260

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1261
                    self.all_out_emb_vars.append(out_var)
1262 1263

                    # delete lookup_table_op
1264
                    delete_ops(program.global_block(), [op])
1265 1266 1267
                    # break for loop
                    break

S
seiriosPlus 已提交
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1314
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1315
        # 2. add split_ids_op and send_op to send gradient to pservers
1316

1317 1318
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1319
        table_grad_name = grad_var_name(self.table_name)
1320 1321 1322 1323
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1324
                program.global_block()._insert_op(
1325 1326 1327 1328 1329
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1330 1331
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1332
                program.global_block()._insert_op(
1333
                    index=op_index + 2,
1334
                    type="send",
1335
                    inputs={'X': self.trainer_side_table_grad_list},
1336 1337 1338 1339 1340
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1341
                    attrs={
1342
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1343
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1344
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1345 1346 1347 1348 1349
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1350
                    })
1351 1352 1353 1354 1355 1356
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1357
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1383
        return prefetch_var_name_to_block_id
1384 1385

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1386
                                     pre_block_idx, grad_to_block_id):
1387
        # STEP: create table optimize block
1388
        table_opt_block = pserver_program._create_block(pre_block_idx)
1389
        # create table param and grad var in pserver program
1390 1391
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1392 1393
            op for op in self.optimize_ops if 'Param' in op.input_names and
            op.input("Param")[0] == self.table_name
1394 1395
        ][0]

Y
Yancey1989 已提交
1396 1397
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1398

T
tangwei12 已提交
1399
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1400 1401
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1402 1403 1404
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1405 1406
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1407
            shape=table_shape,
Y
Yancey1989 已提交
1408 1409 1410
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1411

1412 1413
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1414
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1415
            self.origin_program.global_block().vars[grad_var_name(
1416
                self.table_name)])
1417

1418 1419 1420
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1421

1422 1423 1424
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1425
            pserver_side_table_grad_list = [
1426 1427 1428 1429 1430 1431 1432 1433 1434
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1435
            # append sum op for pserver_side_table_grad_list
1436 1437
            table_opt_block.append_op(
                type="sum",
1438
                inputs={"X": pserver_side_table_grad_list},
1439 1440
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1441 1442
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1443
            origin_grad_name = grad_var.name
1444 1445
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1446 1447
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1448
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1449
            grad_var = pserver_program.global_block()._rename_var(
1450
                origin_grad_name, splited_grad_name)
1451 1452 1453 1454 1455 1456 1457

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1458
        # only support sgd now
1459 1460 1461
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1462
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1463

1464 1465 1466
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1467 1468
        return table_opt_block

T
tangwei12 已提交
1469 1470 1471 1472 1473
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1474
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1475
            name="kLookupTablePath",
T
tangwei12 已提交
1476 1477
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1478

W
Wu Yi 已提交
1479
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1480
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1481 1482 1483 1484
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1485
            attrs={'file_path': "none"})
T
tangwei12 已提交
1486 1487 1488

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1489 1490 1491 1492 1493
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1494
        Create vars for each split.
T
typhoonzero 已提交
1495 1496
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1497 1498 1499 1500
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1501
        Returns:
1502
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1503
                from original var name to each var split.
T
typhoonzero 已提交
1504
        """
1505 1506

        # varname->[(block_id, current_block_size)]
1507
        block_map = collections.OrderedDict()
1508

1509
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1510 1511
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1512
            if varname not in block_map:
T
typhoonzero 已提交
1513
                block_map[varname] = []
1514
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1515

M
minqiyang 已提交
1516
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1517
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1518
            if len(splited) == 1:
1519
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1520
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1521
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1522
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1523 1524 1525 1526 1527
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1528
                continue
T
typhoonzero 已提交
1529
            var_mapping[varname] = []
T
typhoonzero 已提交
1530 1531 1532 1533
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1534

T
typhoonzero 已提交
1535
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1536
                size = block[1]
M
minqiyang 已提交
1537
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1538 1539 1540
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1541
                new_var_name = ""
1542
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1543
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1544
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1545 1546
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1547
                                   (varname, i)
T
typhoonzero 已提交
1548
                var = program.global_block().create_var(
T
typhoonzero 已提交
1549 1550
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1551
                    dtype=orig_var.dtype,
1552
                    type=orig_var.type,
T
typhoonzero 已提交
1553
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1554
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1555
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1556
        return var_mapping
T
done  
typhoonzero 已提交
1557

1558
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1559 1560 1561 1562 1563 1564
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1565
            persistable=persistable)
T
done  
typhoonzero 已提交
1566

Q
Qiao Longfei 已提交
1567 1568 1569 1570 1571 1572 1573
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1574
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1575 1576
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1577
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1578
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1579
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1580 1581
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1582
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1583 1584 1585 1586
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1587 1588 1589 1590
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1591
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1592
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1593 1594 1595 1596
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1597
                attrs={
Q
Qiao Longfei 已提交
1598
                    "sections": height_sections,
1599 1600
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1601 1602 1603
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1604

T
typhoonzero 已提交
1605 1606 1607 1608
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1609
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1622
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1623 1624
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1625 1626
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1627
                return param_shape
1628 1629 1630
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1631 1632 1633
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1634 1635
        elif op_type == "sgd":
            pass
1636 1637 1638 1639
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1640 1641
        return orig_shape

1642 1643
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1644
        orig_var_name = ""
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1655
        else:
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1678
            return None
1679 1680 1681 1682
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1683
        else:
1684
            merged_var_name = orig_varname
1685 1686

        merged_var = pserver_block.vars[merged_var_name]
1687 1688 1689
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1690
            for i in range(self.trainer_num):
1691
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1692
                                   (merged_var_name, i)
1693 1694 1695 1696
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1697 1698
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1699 1700 1701 1702 1703
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1704
        return merged_var
T
typhoonzero 已提交
1705

W
Wu Yi 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1768
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1769
                            grad_to_block_id, origin_program, merged_var):
1770
        program = optimize_block.program
T
typhoonzero 已提交
1771
        pserver_block = program.global_block()
1772
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1783 1784 1785 1786
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1787
        for key in opt_op.input_names:
T
typhoonzero 已提交
1788
            if key == "Grad":
W
Wu Yi 已提交
1789 1790 1791
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1802
            elif key == "Param":
W
Wu Yi 已提交
1803
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1804 1805
                if not param_block:
                    return
T
typhoonzero 已提交
1806
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1807
                    name=param_block.name,
T
typhoonzero 已提交
1808
                    persistable=True,
T
typhoonzero 已提交
1809 1810 1811
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1812
            elif key == "LearningRate":
1813
                # learning rate variable has already be created by non-optimize op,
1814
                # don't create it once again.
1815
                lr_varname = opt_op.input(key)[0]
1816
                if lr_varname in pserver_block.vars:
1817 1818 1819 1820 1821 1822 1823 1824 1825
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1826

T
typhoonzero 已提交
1827
        for key in opt_op.input_names:
1828
            new_shape = None
W
Wu Yi 已提交
1829
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1830
                continue
1831
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1832
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1833
            # update accumulator variable shape
1834 1835
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1836
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1837 1838 1839 1840 1841
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1842

1843
        # change output's ParamOut variable
1844 1845
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1846
        outputs["ParamOut"] = new_inputs["Param"]
1847
        optimize_block.append_op(
T
typhoonzero 已提交
1848 1849
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1850
            outputs=outputs,
G
gongweibao 已提交
1851
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1864
        grad_block = None
M
minqiyang 已提交
1865
        for _, g in six.iteritems(var_dict):
1866
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1867
                # skip per trainer vars
1868
                if g.name.find(".trainer_") == -1:
1869
                    # only param or grads have splited blocks
1870 1871
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
1872 1873
                        grad_block = g
                        break
1874 1875
        return grad_block

Q
Qiyang Min 已提交
1876 1877 1878
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1879
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1880 1881 1882 1883
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1884
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1885 1886 1887

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1888
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1889 1890 1891 1892
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1893
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1894

Y
Yancey1989 已提交
1895
        return block.append_op(
G
gongweibao 已提交
1896
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1897 1898

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1899
        program = optimize_block.program
1900
        # Append the ops for parameters that do not need to be optimized/updated
1901 1902
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1903
        for key, varlist in six.iteritems(inputs):
1904 1905
            if not isinstance(varlist, list):
                varlist = [varlist]
1906 1907 1908
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1909
                # for inputs/outputs
1910
                grad_block = self._get_pserver_grad_param_var(
1911 1912
                    var, program.global_block().vars)
                if grad_block:
1913
                    varlist[i] = grad_block
1914
                elif var.name not in program.global_block().vars:
1915 1916 1917 1918 1919
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1920

1921 1922
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1923
        for key, varlist in six.iteritems(outputs):
1924 1925
            if not isinstance(varlist, list):
                varlist = [varlist]
1926 1927 1928
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1929 1930
                    var, program.global_block().vars)
                if grad_block:
1931
                    varlist[i] = grad_block
1932
                elif var.name not in program.global_block().vars:
1933 1934 1935 1936 1937
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1938

Y
Yancey1989 已提交
1939
        return optimize_block.append_op(
T
typhoonzero 已提交
1940
            type=opt_op.type,
T
typhoonzero 已提交
1941 1942
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1943
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1944

1945 1946 1947 1948
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1949
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1950
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1951 1952 1953 1954 1955 1956
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1957 1958
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1959 1960 1961 1962 1963 1964
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1965
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1966
        if "Param" in op.input_names and \
T
tangwei12 已提交
1967
                "LearningRate" in op.input_names:
1968 1969 1970 1971 1972 1973 1974
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1975
        if op.input("Param")[0] in param_names:
1976 1977 1978
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1979
                param = op.input("Param")[0]
T
typhoonzero 已提交
1980
                if same_or_split_var(n, param) and n != param:
1981 1982 1983
                    return True
            return False

T
typhoonzero 已提交
1984
    def _get_input_map_from_op(self, varmap, op):
1985
        """Returns a dict from op input name to the vars in varmap."""
1986
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1998
        """Returns a dict from op output name to the vars in varmap."""
1999
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2009 2010

    def _get_lr_ops(self):
2011 2012 2013
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2014 2015 2016 2017
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2018 2019 2020 2021 2022
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2023 2024 2025 2026
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2027
            if self._is_optimizer_op(op):
2028 2029 2030 2031
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2032
        block = self.origin_program.global_block()
2033 2034 2035 2036 2037
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2038

2039 2040 2041 2042 2043
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2044
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2045 2046 2047 2048 2049 2050
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2051 2052
                    # we only need to append op for once
                    break
2053
        return lr_ops
Y
Yancey1989 已提交
2054

W
Wu Yi 已提交
2055 2056 2057 2058 2059
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2060 2061
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2062 2063 2064
            return True
        return False

Y
Yancey1989 已提交
2065
    def _get_optimize_pass(self):
2066
        """
2067
        Get optimizer operators, parameters and gradients from origin_program
2068 2069
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2070
            params_grads (dict): parameter->gradient.
2071
        """
Y
Yancey1989 已提交
2072 2073 2074
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2075 2076
        # tmp set to dedup
        optimize_params = set()
2077
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2078
        for op in block.ops:
W
Wu Yi 已提交
2079
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2080
                opt_ops.append(op)
2081 2082 2083 2084 2085 2086
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2087 2088
                        params_grads.append([
                            origin_var_dict[param_name],
2089
                            origin_var_dict[grad_name]
2090
                        ])
Y
Yancey1989 已提交
2091 2092 2093
            else:
                pass
        return opt_ops, params_grads